FIXED-PARAMETER TRACTABILITY AND COMPLETENESS

For many fixed-parameter problems that are trivially soluable in polynomial-time, such as ($k$-)DOMINATING SET, essentially no better algorithm is presently known than the one which tries all possible solutions. Other problems, such as ($k$-)FEEDBACK VERTEX SET, exhibit fixed-parameter tractability: for each fixed $k$ the problem is soluable in time bounded by a polynomial of degree $c$, where $c$ is a constant independent of $k$. We establish the main results of a completeness program which addresses the apparent fixed-parameter intractability of many parameterized problems. In particular, we define a hierarchy of classes of parameterized problems $FPT \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq W[SAT] \subseteq W[P]$ and identify natural complete problems for $W[t]$ for $t \geq 2$. (In other papers we have shown many problems complete for $W[1]$.) DOMINATING SET is shown to be complete for $W[2]$, and thus is not fixed-parameter tractable unless INDEPENDENT SET, CLIQUE, IRREDUNDANT SET and many other natural problems in $W[2]$ are also fixed-parameter tractable. We also give a compendium of currently known hardness results as an appendix.

[1]  Michael R. Fellows,et al.  On Well-Partial-Order Theory and its Application to Combinatorial Problems of VLSI Design , 1989, SIAM J. Discret. Math..

[2]  Clyde L. Monma,et al.  On the Complexity of Covering Vertices by Faces in a Planar Graph , 1988, SIAM J. Comput..

[3]  Saharon Shelah,et al.  Nearly Linear Time , 1989, Logic at Botik.

[4]  Shlomo Moran,et al.  Non Deterministic Polynomial Optimization Problems and their Approximations , 1977, Theor. Comput. Sci..

[5]  David Sankoff,et al.  COMPUTATIONAL COMPLEXITY OF INFERRING PHYLOGENIES BY COMPATIBILITY , 1986 .

[6]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[7]  Michael R. Fellows,et al.  A Simple Linear-Time Algorithm for Finding Path-Decompositions of Small Width , 1994, Inf. Process. Lett..

[8]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[9]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[10]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[11]  Bernd Voigt,et al.  Finding Minimally Weighted Subgraphs , 1991, WG.

[12]  Michael R. Fellows,et al.  On the Complexity of Fixed Parameter Problems (Extended Abstract) , 1989, FOCS 1989.

[13]  Harry R. Lewis,et al.  Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..

[14]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[15]  Michael R. Fellows,et al.  Finite automata, bounded treewidth, and well-quasiordering , 1991, Graph Structure Theory.

[16]  Detlef Seese,et al.  Problems Easy for Tree-Decomposable Graphs (Extended Abstract) , 1988, ICALP.

[17]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[18]  Michael R. Fellows,et al.  The Parameterized Complexity of Sequence Alignment and Consensus , 1994, CPM.

[19]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[20]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests and Depth First Search , 1989, WADS.

[21]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[22]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[23]  Liming Cai,et al.  On fixed-parameter tractability and approximability of NP-hard optimization problems , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[24]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[25]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[26]  M. W. Shields An Introduction to Automata Theory , 1988 .

[27]  Peter Winkler,et al.  Counting linear extensions is #P-complete , 1991, STOC '91.

[28]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues , 1995, Ann. Pure Appl. Log..

[29]  D. Bienstock,et al.  Algorithmic Implications of the Graph Minor Theorem , 1995 .

[30]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[31]  Anne Condon The Complexity of the Max Word Problem , 1991, STACS.

[32]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[33]  Eugene M. Luks Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time , 1980, FOCS.

[34]  Michael R. Fellows,et al.  Two Strikes Against Perfect Phylogeny , 1992, ICALP.

[35]  Patrick C. Fischer,et al.  Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..

[36]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[37]  Michael R. Fellows,et al.  An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[38]  Haim Kaplan,et al.  Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques , 1996, SIAM J. Comput..

[39]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[40]  Michael R. Fellows,et al.  Fixed-Parameter Complexity and Cryptography , 1993, AAECC.

[41]  Alon Itai,et al.  Some Matching Problems for Bipartite Graphs , 1978, JACM.

[42]  Liming Cai,et al.  On Input Read-Modes of Alternating Turing Machines , 1995, Theor. Comput. Sci..

[43]  STACS 93 , 1993, Lecture Notes in Computer Science.

[44]  John George Geske,et al.  On the structure of intractable sets , 1987 .

[45]  Richard J. Anderson,et al.  A P-complete problem and approximations to it , 1984 .

[46]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[47]  Michael R. Fellows,et al.  Nonconstructive Advances in Polynomial-Time Complexity , 1987, Inf. Process. Lett..

[48]  Kenneth W. Regan Finitary substructure languages with application to the theory of NP-completeness , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[49]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[50]  Michael R. Fellows,et al.  Parameterized learning complexity , 1993, COLT '93.

[51]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[52]  M.R. Fellows,et al.  Self-witnessing polynomial-time complexity and prime factorization , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[53]  Liming Cai,et al.  On the Structure of Parameterized Problems in NP , 1995, Inf. Comput..

[54]  William I. Gasarch,et al.  OptP as the Normal Behavior of NP-Complete Problems , 1995, Math. Syst. Theory.

[55]  M. Fellows,et al.  Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.

[56]  Hans L. Bodlaender,et al.  Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.

[57]  R. Downey,et al.  Parameterized Computational Feasibility , 1995 .

[58]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[59]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[60]  Chandra R. Chegireddy,et al.  Algorithms for finding K-best perfect matchings , 1987, Discret. Appl. Math..

[61]  H. Bodlaender Classes of graphs with bounded tree-width , 1986 .

[62]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[63]  Hesham Hassan Ali,et al.  Minimizing setups in precedence constrained scheduling , 1988 .

[64]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[65]  Geoff Whittle,et al.  Recognizing Polymatroids Associated with Hypergraphs , 1993, Combinatorics, Probability and Computing.

[66]  D. Sivakumar,et al.  Quasilinear Time Complexity Theory , 1994, STACS.

[67]  Michael R. Fellows,et al.  Layout permutation problems and well-partially-ordered sets , 1988 .

[68]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[69]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[70]  Michael R. Fellows,et al.  DNA Physical Mapping: Three Ways Difficult , 1993, ESA.

[71]  Michael R. Fellows,et al.  Fixed-parameter tractability and completeness III: some structural aspects of the W hierarchy , 1993 .

[72]  Liming Cai,et al.  On the Amount of Nondeterminism and the Power of Verifying (Extended Abstract) , 1993, MFCS.

[73]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.