A Visual-Cue-Dependent Memory Circuit for Place Navigation

Summary The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation.

[1]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[2]  Raag D. Airan,et al.  Natural Neural Projection Dynamics Underlying Social Behavior , 2014, Cell.

[3]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[4]  Masahiro Yasuda,et al.  CaMKII Activation in the Entorhinal Cortex Disrupts Previously Encoded Spatial Memory , 2006, Neuron.

[5]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[6]  J. O’Keefe,et al.  Single unit activity in the rat hippocampus during a spatial memory task , 2004, Experimental Brain Research.

[7]  Matthew F. Nolan,et al.  Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning , 2018, Cell reports.

[8]  Winford A. Gordon,et al.  Effects of scopolamine, pentobarbital, and amphetamine on radial arm maze performance in the rat , 1980, Pharmacology Biochemistry and Behavior.

[9]  David C Rowland,et al.  Place cells, grid cells, and memory. , 2015, Cold Spring Harbor perspectives in biology.

[10]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[11]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[12]  Brian J. Wiltgen,et al.  NF-kappa B functions in synaptic signaling and behavior. , 2003, Nature neuroscience.

[13]  S. Tonegawa,et al.  Successful Execution of Working Memory Linked to Synchronized High-Frequency Gamma Oscillations , 2014, Cell.

[14]  Shaoqun Zeng,et al.  Primary Auditory Cortex is Required for Anticipatory Motor Response , 2017, Cerebral cortex.

[15]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[16]  J. Bassett,et al.  Persistent neural activity in head direction cells. , 2003, Cerebral cortex.

[17]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[18]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[19]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[20]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[21]  Eran Stark,et al.  Sharp wave ripples during learning stabilize hippocampal spatial map , 2017, Nature Neuroscience.

[22]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[23]  M. Fyhn,et al.  Hippocampal Neurons Responding to First-Time Dislocation of a Target Object , 2002, Neuron.

[24]  Larry R Squire,et al.  Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. , 2014, Cell reports.

[25]  H. Eichenbaum,et al.  Memory Representation within the Parahippocampal Region , 1997, The Journal of Neuroscience.

[26]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[27]  Lynn Hazan,et al.  Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization , 2006, Journal of Neuroscience Methods.

[28]  Daoyun Ji,et al.  Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats during spatial behavior , 2015, eLife.

[29]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[30]  M. Albert Neuropsychology of Alzheimer's disease. , 2008, Handbook of clinical neurology.

[31]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[32]  Alexander J. Rivest,et al.  Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory , 2011, Science.

[33]  Jill K. Leutgeb,et al.  Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes , 2017, Neuron.

[34]  D. Tank,et al.  Persistent neural activity: prevalence and mechanisms , 2004, Current Opinion in Neurobiology.

[35]  S. Tonegawa,et al.  Entorhinal–hippocampal neuronal circuits bridge temporally discontiguous events , 2015, Learning & memory.

[36]  Gonzalo Sánchez-Benavides,et al.  Neuropsychology of Alzheimer's disease. , 2012, Archives of medical research.

[37]  R. Desimone,et al.  Object and place memory in the macaque entorhinal cortex. , 1997, Journal of neurophysiology.

[38]  M. Moser,et al.  Optogenetic Dissection of Entorhinal-Hippocampal Functional Connectivity , 2013, Science.

[39]  A. Redish,et al.  Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task. , 2004, Journal of neurophysiology.

[40]  A. Alonso,et al.  Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. , 1997, Journal of neurophysiology.

[41]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[42]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[43]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[44]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[45]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[46]  Michael E Hasselmo,et al.  Mglur-dependent Persistent Firing in Entorhinal Cortex Layer Iii Neurons , 2022 .