IDyOT: A Computational Theory of Creativity as Everyday Reasoning from Learned Information

We present progress towards a computational cognitive architecture, IDyOT (Information Dynamics of Thinking) that is intended to account for certain aspects of human creativity and other forms of cognitive processing in terms of a pre-conscious predictive loop. The theory is motivated in terms of the evolutionary pressure to be efficient. It makes several predictions that may be tested by building computational implementations and studying their behaviour.

[1]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[2]  B. Baars A cognitive theory of consciousness , 1988 .

[3]  J A Endler,et al.  Sensory ecology, receiver biases and sexual selection. , 1998, Trends in ecology & evolution.

[4]  Kazuo Okanoya,et al.  Behavioural Factors Governing Song Complexity in Bengalese Finches , 2012 .

[5]  P. Slater,et al.  Vocal Learning in Mammals , 1997 .

[6]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[7]  H. P Nii,et al.  Blackboard Systems , 1986 .

[8]  Geraint A. Wiggins Models of musical similarity , 2007 .

[9]  Edward Holmes The Life of Mozart: Frontmatter , 2009 .

[10]  R. Hinde,et al.  Advances in the study of behavior , 1966 .

[11]  J. Guilford,et al.  The nature of human intelligence. , 1968 .

[12]  J. Pine,et al.  Chunking mechanisms in human learning , 2001, Trends in Cognitive Sciences.

[13]  Geraint A. Wiggins,et al.  Methods for Combining Statistical Models of Music , 2004, CMMR.

[14]  M. Pearce,et al.  Sweet Anticipation : Music and the Psychology of Expectation , 2007 .

[15]  Paul R. Cohen,et al.  An Algorithm for Segmenting Categorical Time Series into Meaningful Episodes , 2001, IDA.

[16]  Geraint A. Wiggins The Mind’s Chorus: Creativity Before Consciousness , 2012, Cognitive Computation.

[17]  Ian H. Witten,et al.  PREDICTION AND ENTROPY OF MUSIC , 1990 .

[18]  Geraint A. Wiggins,et al.  Multiple Viewpoint Systems: Time Complexity and the Construction of Domains for Complex Musical Viewpoints in the Harmonization Problem , 2013 .

[19]  Geraint A. Wiggins,et al.  Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music , 2013, Cognitive, Affective, & Behavioral Neuroscience.

[20]  J. Saffran,et al.  Absolute pitch in infant auditory learning: evidence for developmental reorganization. , 2001, Developmental psychology.

[21]  Peter M. Todd,et al.  Evolution of rhythm as an indicator of mate quality , 2009 .

[22]  W. Dowling Emotion and Meaning in Music , 2008 .

[23]  Ellen C. Garland,et al.  Dynamic Horizontal Cultural Transmission of Humpback Whale Song at the Ocean Basin Scale , 2011, Current Biology.

[24]  Anil Kumar,et al.  Acoustic communication in birds , 2003 .

[25]  A. Zahavi Mate selection-a selection for a handicap. , 1975, Journal of theoretical biology.

[26]  Jeffrey Podos,et al.  Song Learning, Early Nutrition and Sexual Selection in Songbirds , 1998 .

[27]  Geraint A. Wiggins,et al.  EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND LEARNING , 2006 .

[28]  Geraint A. Wiggins Searching for computational creativity , 2006, New Generation Computing.

[29]  K. Laland Social learning strategies , 2004, Learning & behavior.

[30]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[31]  Geraint A. Wiggins ‘‘I let the music speak’’: Cross-domain application of a cognitive model of musical learning , 2011 .

[32]  Edward Holmes The Life of Mozart by Edward Holmes , 2009 .

[33]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[34]  Kamran Baig An act of creation , 2003, BMJ : British Medical Journal.

[35]  Murray Shanahan,et al.  Embodiment and the inner lifeCognition and Consciousness in the Space of Possible Minds , 2010 .

[36]  Geraint A. Wiggins Computer models of (music) cognition , 2011 .

[37]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[38]  Henkjan Honing,et al.  Computational modeling of music cognition: a case study on model selection. , 2006 .

[39]  Rob Saunders,et al.  Curious Design Agents and Artificial Creativity - A Synthetic Approach to the Study of Creative Behaviour , 2001 .

[40]  Chris Mellish,et al.  Statistical Learning of Harmonic Movement , 1999 .

[41]  B. Merker The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control , 2013, Front. Psychol..

[42]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[43]  David Collins,et al.  The Act of Musical Composition: Studies in the Creative Process , 2012 .

[44]  Arash Eshghi,et al.  Probabilistic induction for an incremental semantic grammar , 2013, IWCS.

[45]  J. Fodor Special sciences (or: The disunity of science as a working hypothesis) , 1974, Synthese.

[46]  D. Cato,et al.  Cultural revolution in whale songs , 2000, Nature.

[47]  Geraint A. Wiggins,et al.  Evaluating Cognitive Models of Musical Composition , 2007 .

[48]  Terri Gullickson The Creative Mind: Myths and Mechanisms. , 1995 .

[49]  Geraint A. Wiggins,et al.  Auditory Expectation: The Information Dynamics of Music Perception and Cognition , 2012, Top. Cogn. Sci..

[50]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Approach to Identifying Sentence Boundaries , 1997, ANLP.

[51]  S. Wright Evolution and the Genetics of Populations, Volume 3: Experimental Results and Evolutionary Deductions , 1977 .

[52]  J. Sloboda,et al.  Handbook of Music and Emotion: Theory, Research, Applications , 2011 .

[53]  Ron McClamrock,et al.  Marr's three levels: A re-evaluation , 1991, Minds and Machines.

[54]  S. Fienberg,et al.  The Clockwork Muse: The Predictability of Artistic Change. , 1991 .

[55]  Geraint A. Wiggins,et al.  A preliminary framework for description, analysis and comparison of creative systems , 2006, Knowl. Based Syst..

[56]  D. Bouwhuis,et al.  Attention and performance X : control of language processes , 1986 .

[57]  G. Wallas The art of thought , 1926 .

[58]  María Herrojo Ruiz,et al.  Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation , 2010, NeuroImage.

[59]  Justyna Humięcka-Jakubowska,et al.  Sweet Anticipation : Music and , 2006 .

[60]  Zoltán Juhász,et al.  A comparative phylogenetic study of genetics and folk music , 2012, Molecular Genetics and Genomics.

[61]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[62]  Alex McLean,et al.  Unifying Conceptual Spaces: Concept Formation in Musical Creative Systems , 2010, Minds and Machines.

[63]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[64]  D. Chalmers The conscious mind: in search of a fundamental theory , 1996 .

[65]  Kazuo Okanoya,et al.  Revisiting the syntactic abilities of non-human animals: natural vocalizations and artificial grammar learning , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[66]  M. Boden The creative mind : myths & mechanisms , 1991 .

[67]  Hc Plotkin,et al.  Evolution in Mind , 1997 .

[68]  Noam Chomsky,et al.  The evolution of the language faculty: Clarifications and implications , 2005, Cognition.

[69]  Ilona Papousek,et al.  The time-course of EEG alpha power changes in creative ideation , 2014, Front. Hum. Neurosci..

[70]  M. Csíkszentmihályi Creativity: Flow and the Psychology of Discovery and Invention , 1996 .

[71]  Alexa R. Romberg,et al.  Statistical learning and language acquisition. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[72]  Oliver Bown,et al.  From maladaptation to competition to cooperation in the evolution of musical behaviour , 2009 .

[73]  Elizabeth Hellmuth Margulis,et al.  Musical Style, Psychoaesthetics, and Prospects for Entropy as an Analytic Tool , 2008, Computer Music Journal.

[74]  David J. Hand,et al.  Advances in intelligent data analysis , 2000 .

[75]  C. Neuper,et al.  The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI , 2009, Human brain mapping.

[76]  Daniel Jurafsky,et al.  A Bayesian Model Predicts Human Parse Preference and Reading Times in Sentence Processing , 2001, NIPS.

[77]  Constance Scharff,et al.  The use of network analysis to study complex animal communication systems: a study on nightingale song , 2014, Proceedings of the Royal Society B: Biological Sciences.

[78]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[79]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[80]  N. Emery Cognition, Evolution, and Behavior Cognition, Evolution, and Behavior. 2nd edn. By Sara J. Shettleworth. Oxford: Oxford University Press (2009). Pp. xiii+700. Price $59.95 paperback. , 2010, Animal Behaviour.

[81]  A. Vinter,et al.  PARSER: A Model for Word Segmentation , 1998 .

[82]  G. Miller Protean primates: The evolution of adaptive unpredictability in competition and courtship , 1997 .

[83]  Alan Marsden Response to Geraint Wiggins , 2012 .

[84]  John Hale,et al.  A Probabilistic Earley Parser as a Psycholinguistic Model , 2001, NAACL.

[85]  E. Holmes The Life of Mozart: Including his Correspondence , 1991 .

[86]  Michael Luck,et al.  Agent technology: Enabling next generation computing , 2003 .

[87]  J. Hawkins,et al.  Language and Music as Cognitive Systems , 2011 .

[88]  G. Fairbanks,et al.  A psychophysical investigation of vowel formants. , 1961, Journal of speech and hearing research.

[89]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[90]  John R. Anderson,et al.  Learning Artificial Grammars With Competitive Chunking , 1990 .

[91]  A. Meltzoff,et al.  The development of gaze following and its relation to language. , 2005, Developmental science.