Grey wolf optimization for PID controller design with prescribed robustness margins

The grey wolf optimization algorithm is proposed to design proportional, integrative and derivative controllers using a two degrees of freedom control configuration. The control system is designed in order to achieve good set-point tracking and disturbance rejection performance. The design is accomplished by minimizing an aggregated cost function based on the time-weighted absolute error integral, subjected to robustness constraints. The control system robustness levels are prescribed in terms of the vector margin and maximum complementary sensitivity function values. Simulation results are presented for several common systems dynamics and compared with the ones obtained with a particle swarm optimization algorithm.

[1]  Stephen P. Boyd,et al.  PID design by convex-concave optimization , 2013, 2013 European Control Conference (ECC).

[2]  Paul W. Murrill,et al.  Automatic control of processes , 1967 .

[3]  Tore Hägglund,et al.  Noise filtering in PI and PID Control , 2013, 2013 American Control Conference.

[4]  Tore Hägglund,et al.  Signal filtering in PID control , 2012 .

[5]  Stanko Strmcnik,et al.  A magnitude optimum multiple integration tuning method for filtered PID controller , 2001, Autom..

[6]  Paulo Moura Oliveira,et al.  From single to many-objective PID controller design using particle swarm optimization , 2017 .

[7]  Paulo Novais,et al.  Design of Posicast PID control systems using a gravitational search algorithm , 2015, Neurocomputing.

[8]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[9]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[10]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[11]  A. H. Jones,et al.  Genetic auto-tuning of PID controllers , 1995 .

[12]  José Boaventura Cunha,et al.  Design of PID controllers using the particle swarm algorithm , 2002 .

[13]  Dipayan Guha,et al.  Load frequency control of interconnected power system using grey wolf optimization , 2016, Swarm Evol. Comput..

[14]  Lalit Chandra Saikia,et al.  Automatic generation control of a multi-area ST – Thermal power system using Grey Wolf Optimizer algorithm based classical controllers , 2015 .

[15]  Yudong Zhang,et al.  A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications , 2015 .

[16]  Diptanu Das,et al.  Optimal tuning of PID controller using GWO algorithm for speed control in DC motor , 2015, 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI).

[17]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[18]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[19]  Shyam Krishna Nagar,et al.  Optimized PID Controller for Magnetic Levitation System , 2016 .

[20]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[21]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[22]  Mostafa A. El-Hosseini,et al.  Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with an aging leader and challengers , 2016, Appl. Soft Comput..

[23]  Ponnuthurai N. Suganthan,et al.  Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization , 2011, Inf. Sci..

[24]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[25]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[26]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[27]  Paulo Moura Oliveira,et al.  Grey Wolf, Gravitational Search and Particle Swarm Optimizers: A Comparison for PID Controller Design , 2017 .

[28]  Esmaeil Jahanshahi,et al.  Industrial test setup for autotuning of PID controllers in large-scale processes: Applied to Tennessee Eastman process , 2015 .

[29]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers - A Survey , 1992 .