The HulC: Confidence Regions from Convex Hulls
暂无分享,去创建一个
Sivaraman Balakrishnan | Larry Wasserman | Arun Kumar Kuchibhotla | Arun K. Kuchibhotla | L. Wasserman | Sivaraman Balakrishnan | A. Kuchibhotla
[1] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[2] J. G. Wendel. A Problem in Geometric Probability. , 1962 .
[3] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[4] A. Birnbaum. MEDIAN-UNBIASED ESTIMATORS , 1964 .
[5] Douglas S. Robson,et al. Estimation of a truncation point , 1964 .
[6] Pranab Kumar Sen,et al. Asymptotic Normality of Sample Quantiles for $m$-Dependent Processes , 1968 .
[7] R. H. Rodine,et al. Estimation of the population median , 1969 .
[8] J. A. Hartigan,et al. Using Subsample Values as Typical Values , 1969 .
[9] Some Numerical Comparisons of Several Approximations to the Binomial Distribution , 1969 .
[10] J. Pfanzagl. Median unbiased estimates for M.L.R.-families , 1970 .
[11] Rudolf Borges. Eine Approximation der Binomialverteilung durch die Normalverteilung der Ordnung 1/n , 1970 .
[12] J. Pfanzagl. On the Asymptotic Efficiency of Median Unbiased Estimates , 1970 .
[13] J. A. Hartigan. Exact Confidence Intervals in Regression Problems with Independent Symmetric Errors , 1970 .
[14] J. Pfanzagl. TheBerry-Esseen bound for minimum contrast estimates , 1971 .
[15] J. Pfanzagl. On median unbiased estimates , 1972 .
[16] J. Pfanzagl. The accuracy of the normal approximation for estimates of vector parameters , 1973 .
[17] J. Pfanzagl. Asymptotic Expansions Related to Minimum Contrast Estimators , 1973 .
[18] S. John. Median-unbiased most acceptable estimates of poisson, binomial and negative-binomial distributions , 1974 .
[19] J. Lanke. Interval Estimation of a Median , 1974 .
[20] A. Cohen,et al. A Complete Class Theorem for Strict Monotone Likelihood Ratio With Applications , 1976 .
[21] J. Pfanzagl. On Optimal Median Unbiased Estimators in the Presence of Nuisance Parameters , 1979 .
[22] F. T. Wright. The Asymptotic Behavior of Monotone Regression Estimates , 1981 .
[23] Bradley Efron. Transformation Theory: How Normal is a Family of Distributions? , 1982 .
[24] Peter Hall,et al. On Estimating the Endpoint of a Distribution , 1982 .
[25] R. Hogg,et al. On adaptive estimation , 1984 .
[26] P. Hall. On the Bootstrap and Confidence Intervals , 1986 .
[27] K. Athreya. BOOTSTRAP OF THE MEAN IN THE INFINITE VARIANCE CASE , 1987 .
[28] P. Phillips,et al. Best Median Unbiased Estimation in Linear Regression with Bounded Asymmetric Loss Functions , 1987 .
[29] P. Hall. Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .
[30] Keith Knight,et al. On the Bootstrap of the Sample Mean in the Infinite Variance Case , 1989 .
[31] Anastasios A. Tsiatis,et al. Median Unbiased Estimation for Binary Data , 1989 .
[32] P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .
[33] M. Chavance. [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.
[34] Enno Mammen,et al. Bootstrap, wild bootstrap, and asymptotic normality , 1992 .
[35] P. Bickel. Efficient and Adaptive Estimation for Semiparametric Models , 1993 .
[36] S E Vollset,et al. Confidence intervals for a binomial proportion. , 1994, Statistics in medicine.
[37] D. Firth. Bias reduction of maximum likelihood estimates , 1993 .
[38] J. Pfanzagl. Parametric Statistical Theory , 1994 .
[39] Joseph P. Romano,et al. Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .
[40] K. Hamza. The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions , 1995 .
[41] Q. Shao. Self-normalized large deviations , 1997 .
[42] Geoffrey S. Watson,et al. Simulation methods for mean and median bias reduction in parametric estimation , 1997 .
[43] F. Götze,et al. A Berry–Esséen Bound for M‐estimators , 1997 .
[44] E. Mammen. The Bootstrap and Edgeworth Expansion , 1997 .
[45] Joseph P. Romano,et al. Subsampling inference for the mean in the heavy-tailed case , 1999 .
[46] Joseph P. Romano,et al. On Subsampling Estimators with Unknown Rate of Convergence , 1999 .
[47] D. Andrews. Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .
[48] L. Brown,et al. Interval Estimation for a Binomial Proportion , 2001 .
[49] Patrice Bertail,et al. Extrapolation of subsampling distribution estimators: The i.i.d. and strong mixing cases , 2001 .
[50] Emo Welzl,et al. A Continuous Analogue of the Upper Bound Theorem , 2001, Discret. Comput. Geom..
[51] T. Tony Cai,et al. Confidence Intervals for a binomial proportion and asymptotic expansions , 2002 .
[52] Bing-Yi Jing,et al. Self-normalized Cramér-type large deviations for independent random variables , 2003 .
[53] V. Bentkus,et al. A Lyapunov type bound in $R^d$@@@A Lyapunov-type bound in $R^d$ , 2004 .
[54] James M. Robins,et al. Optimal Structural Nested Models for Optimal Sequential Decisions , 2004 .
[55] V. Bentkus. A Lyapunov-type Bound in Rd , 2005 .
[56] G. Imbens,et al. On the Failure of the Bootstrap for Matching Estimators , 2006 .
[57] Stephen M. Stigler,et al. c ○ Institute of Mathematical Statistics, 2007 The Epic Story of Maximum Likelihood , 2022 .
[58] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[59] C. Durot. Monotone nonparametric regression with random design , 2008 .
[60] D. Andrews,et al. ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.
[61] K. Hirano,et al. Impossibility Results for Nondifferentiable Functionals , 2012 .
[62] David Firth,et al. Bias reduction in exponential family nonlinear models , 2009 .
[63] Han-Ying Liang,et al. BerryEsseen type bounds in heteroscedastic semi-parametric model , 2011 .
[64] S. Boucheron,et al. Concentration inequalities for order statistics , 2012, 1207.7209.
[65] Mehryar Mohri,et al. Tight Lower Bound on the Probability of a Binomial Exceeding its Expectation , 2013, ArXiv.
[66] A. Rinaldo,et al. Bootstrapping and sample splitting for high-dimensional, assumption-lean inference , 2016, The Annals of Statistics.
[67] Alessandra Salvan,et al. Median bias reduction of maximum likelihood estimates , 2016, 1604.04768.
[68] I. Pinelis. Optimal-order uniform and nonuniform bounds on the rate of convergence to normality for maximum likelihood estimators , 2017 .
[69] J. Pfanzagl. Optimality of Unbiased Estimators: Nonasymptotic Theory , 2017 .
[70] Z. Kabluchko,et al. Expected volumes of Gaussian polytopes, external angles, and multiple order statistics , 2017, Transactions of the American Mathematical Society.
[71] Adityanand Guntuboyina,et al. Nonparametric Shape-Restricted Regression , 2017, Statistical Science.
[72] Benjamin Doerr,et al. An Elementary Analysis of the Probability That a Binomial Random Variable Exceeds Its Expectation , 2017, Statistics & Probability Letters.
[73] Andrés Santos,et al. Inference on Directionally Differentiable Functions , 2014, The Review of Economic Studies.
[74] L. Wasserman,et al. Gaussian Mixture Clustering Using Relative Tests of Fit. , 2019, 1910.02566.
[75] Kai Zhang,et al. Models as Approximations I: Consequences Illustrated with Linear Regression , 2014, Statistical Science.
[76] Kengo Kato,et al. Berry–Esseen bounds for Chernoff-type nonstandard asymptotics in isotonic regression , 2019, The Annals of Applied Probability.
[77] B. Sen,et al. Inference for Local Parameters in Convexity Constrained Models , 2020, Journal of the American Statistical Association.
[78] Larry Wasserman,et al. Universal inference , 2019, Proceedings of the National Academy of Sciences.
[79] Nicola Sartori,et al. Mean and median bias reduction in generalized linear models , 2018, Stat. Comput..
[80] Hang Deng. Slightly Conservative Bootstrap for Maxima of Sums. , 2020, 2007.15877.
[81] Yuta Koike. Notes on the dimension dependence in high-dimensional central limit theorems for hyperrectangles , 2019, Japanese Journal of Statistics and Data Science.
[82] V. Chernozhukov,et al. Nearly optimal central limit theorem and bootstrap approximations in high dimensions , 2020, The Annals of Applied Probability.
[83] Vladimir Koltchinskii,et al. Efficient estimation of smooth functionals in Gaussian shift models , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[84] Cun-Hui Zhang,et al. Confidence intervals for multiple isotonic regression and other monotone models , 2020, The Annals of Statistics.
[85] Yuta Koike,et al. High-dimensional central limit theorems by Stein’s method , 2020, The Annals of Applied Probability.
[86] Vladimir Koltchinskii,et al. Estimation of smooth functionals in normal models: Bias reduction and asymptotic efficiency , 2019, The Annals of Statistics.
[87] Terry Lyons,et al. Estimating the probability that a given vector is in the convex hull of a random sample , 2021 .
[88] K. Knight. Second order improvements of sample quantiles using subsamples , 2022 .