SmartLoc: push the limit of the inertial sensor based metropolitan localization using smartphone

We present SmartLoc, a localization system to estimate the location and the traveling distance by leveraging the lower-power inertial sensors embedded in smartphones as a supplementary to GPS. To minimize the negative impact of sensor noises, SmartLoc exploits the intermittent strong GPS signals and uses the linear regression to build a prediction model which is based on the trace estimated from inertial sensors and the one computed from the GPS. Furthermore, we utilize landmarks (e.g., bridge, traffic lights) detected automatically and special driving patterns (e.g., turning, uphill, and downhill) from inertial sensory data to improve the localization accuracy when the GPS signal is weak. Our evaluations of SmartLoc in the city demonstrates its technique viability and significant localization accuracy improvement compared with GPS and other approaches: the error is approximately 20m for 90% of time while the known mean error of GPS is 42.22m.

[1]  Uwe Hansmann,et al.  Pervasive Computing , 2003 .

[2]  Guenther Retscher An Intelligent Multi-sensor System for Pedestrian Navigation , 2006 .

[3]  Jie Yang,et al.  Push the limit of WiFi based localization for smartphones , 2012, Mobicom '12.

[4]  Qiang Wang,et al.  Energy efficient GPS sensing with cloud offloading , 2012, SenSys '12.

[5]  Piotr Indyk,et al.  Faster GPS via the sparse fourier transform , 2012, Mobicom '12.

[6]  William G. Griswold,et al.  ActiveCampus: experiments in community-oriented ubiquitous computing , 2004, Computer.

[7]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[8]  Deborah Estrin,et al.  The design and implementation of a self-calibrating distributed acoustic sensing platform , 2006, SenSys '06.

[9]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[10]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[11]  Will Hedgecock,et al.  High-accuracy differential tracking of low-cost GPS receivers , 2013, MobiSys '13.

[12]  Soyoung Hwang,et al.  Localization Improvement of Smartphones Using Built-in Sensors , 2012 .

[13]  Paramvir Bahl,et al.  Switchboard: a matchmaking system for multiplayer mobile games , 2011, MobiSys '11.

[14]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[15]  Per Enge,et al.  The Wide Area Augmentation System , 1994 .

[16]  Ramachandran Ramjee,et al.  Nericell: rich monitoring of road and traffic conditions using mobile smartphones , 2008, SenSys '08.

[17]  Shaojie Tang,et al.  Canopy closure estimates with GreenOrbs: sustainable sensing in the forest , 2009, SenSys '09.

[18]  Margaret Martonosi,et al.  Hardware design experiences in ZebraNet , 2004, SenSys '04.

[19]  Robert Harle,et al.  Pedestrian localisation for indoor environments , 2008, UbiComp.

[20]  Romit Roy Choudhury,et al.  SurroundSense: mobile phone localization via ambience fingerprinting , 2009, MobiCom '09.

[21]  Injong Rhee,et al.  Towards Mobile Phone Localization without War-Driving , 2010, 2010 Proceedings IEEE INFOCOM.

[22]  Kristofer S. J. Pister,et al.  RF Time of Flight Ranging for Wireless Sensor Network Localization , 2006, 2006 International Workshop on Intelligent Solutions in Embedded Systems.

[23]  Piotr Ptasinski,et al.  A method for dead reckoning parameter correction in pedestrian navigation system , 2003, IEEE Trans. Instrum. Meas..

[24]  Yunhao Liu,et al.  Locating in fingerprint space: wireless indoor localization with little human intervention , 2012, Mobicom '12.

[25]  Johann Borenstein,et al.  Non-GPS navigation with the personal dead-reckoning system , 2007, SPIE Defense + Commercial Sensing.

[26]  Kent Larson,et al.  Activity Recognition in the Home Using Simple and Ubiquitous Sensors , 2004, Pervasive.

[27]  J. Miller,et al.  The Institution of Electrical Engineers , 2006, Nature.

[28]  Andy Hopper,et al.  The Anatomy of a Context-Aware Application , 1999, Wirel. Networks.

[29]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[30]  Gaetano Borriello,et al.  WALRUS: wireless acoustic location with room-level resolution using ultrasound , 2005, MobiSys '05.

[31]  Moustafa Youssef,et al.  The Horus location determination system , 2008 .

[32]  Gang Wang,et al.  I am the antenna: accurate outdoor AP location using smartphones , 2011, MobiCom '11.

[33]  Joongheon Kim,et al.  Energy-efficient rate-adaptive GPS-based positioning for smartphones , 2010, MobiSys '10.

[34]  John Krumm,et al.  Accuracy characterization for metropolitan-scale Wi-Fi localization , 2005, MobiSys '05.

[35]  Venkata N. Padmanabhan,et al.  Centaur: locating devices in an office environment , 2012, Mobicom '12.

[36]  Yin Chen,et al.  FM-based indoor localization , 2012, MobiSys '12.

[37]  이영재,et al.  Differential GPS와 응용 , 1994 .

[38]  Tom Minka,et al.  You are facing the Mona Lisa: spot localization using PHY layer information , 2012, MobiSys '12.

[39]  Eyal de Lara,et al.  Are GSM Phones THE Solution for Localization? , 2006, Seventh IEEE Workshop on Mobile Computing Systems & Applications (WMCSA'06 Supplement).

[40]  Yunhao Liu,et al.  Localization of Wireless Sensor Networks in the Wild: Pursuit of Ranging Quality , 2013, IEEE/ACM Transactions on Networking.

[41]  Prabal Dutta,et al.  AutoWitness: locating and tracking stolen property while tolerating GPS and radio outages , 2010, SenSys '10.

[42]  Shaojie Tang,et al.  Locating sensors in the forest: A case study in GreenOrbs , 2012, 2012 Proceedings IEEE INFOCOM.

[43]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[44]  Wei Chen,et al.  An integrated GPS and multi-sensor pedestrian positioning system for 3D urban navigation , 2009, 2009 Joint Urban Remote Sensing Event.

[45]  Yunhao Liu,et al.  Beyond Trilateration: On the Localizability of Wireless Ad Hoc Networks , 2009, IEEE/ACM Transactions on Networking.

[46]  Mike Y. Chen,et al.  Practical Metropolitan-Scale Positioning for GSM Phones , 2006, UbiComp.

[47]  Moustafa Youssef,et al.  No need to war-drive: unsupervised indoor localization , 2012, MobiSys '12.

[48]  Feng Zhao,et al.  Energy-accuracy trade-off for continuous mobile device location , 2010, MobiSys '10.

[49]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[50]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) using AOA , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[51]  Gary M. Weiss,et al.  Activity recognition using cell phone accelerometers , 2011, SKDD.

[52]  Ryan Newton,et al.  The pothole patrol: using a mobile sensor network for road surface monitoring , 2008, MobiSys '08.

[53]  Mohamed N. El-Derini,et al.  GAC: Energy-Efficient Hybrid GPS-Accelerometer-Compass GSM Localization , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[54]  Tore Syversen,et al.  Electronic shepherd - a low-cost, low-bandwidth, wireless network system , 2004, MobiSys '04.

[55]  David Chu,et al.  SwordFight: enabling a new class of phone-to-phone action games on commodity phones , 2012, MobiSys '12.