Stability Criteria for Switched and Hybrid Systems

The study of the stability properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. The objective of this paper is to outline some of these problems, to review progress made in solving them in a number of diverse communities, and to review some problems that remain open. An important contribution of our work is to bring together material from several areas of research and to present results in a unified manner. We begin our review by relating the stability problem for switched linear systems and a class of linear differential inclusions. Closely related to the concept of stability are the notions of exponential growth rates and converse Lyapunov theorems, both of which are discussed in detail. In particular, results on common quadratic Lyapunov functions and piecewise linear Lyapunov functions are presented, as they represent constructive methods for proving stability and also represent problems in which significant progress has been made. We also comment on the inherent difficulty in determining stability of switched systems in general, which is exemplified by NP-hardness and undecidability results. We then proceed by considering the stability of switched systems in which there are constraints on the switching rules, through both dwell-time requirements and state-dependent switching laws. Also in this case the theory of Lyapunov functions and the existence of converse theorems are reviewed. We briefly comment on the classical Lur'e problem and on the theory of stability radii, both of which contain many of the features of switched systems and are rich sources of practical results on the topic. Finally we present a list of questions and open problems which provide motivation for continued research in this area.

[1]  T. Mestl,et al.  A mathematical framework for describing and analysing gene regulatory networks. , 1995, Journal of theoretical biology.

[2]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[3]  William S. Levine,et al.  The Control Handbook , 2005 .

[4]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[5]  Stein Weissenberger Piecewise-quadratic and piecewise-linear Lyapunov functions for discontinuous systems† , 1969 .

[6]  Laurent Massoulié,et al.  Stability of distributed congestion control with heterogeneous feedback delays , 2002, IEEE Trans. Autom. Control..

[7]  Stephen P. Boyd,et al.  Quadratic stabilization and control of piecewise-linear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[8]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[9]  Y. Pyatnitskiy,et al.  An iterative method of Lyapunov function construction for differential inclusions , 1987 .

[10]  Robert Shorten,et al.  A new methodology for the stability analysis of pairwise triangularizable and related switching systems , 2002 .

[11]  László Gerencsér,et al.  BIBO stability of linear switching systems , 2002, IEEE Trans. Autom. Control..

[12]  O. Bobyleva,et al.  Piecewise-Linear Lyapunov Functions and Localization of Spectra of Stable Matrices , 2001 .

[13]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[14]  E. S. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential inclusions and periodic motions of time-varying nonlinear control systems , 1996 .

[15]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[16]  Robert Shorten,et al.  On the Stability of Switched Positive Linear Systems , 2007, IEEE Transactions on Automatic Control.

[17]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[18]  Michael D. Lemmon,et al.  Supervisory hybrid systems , 1999 .

[19]  Michael Margaliot,et al.  Stability analysis of switched systems using variational principles: An introduction , 2006, Autom..

[20]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[21]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[22]  Charles A. Desoer,et al.  Slowly varying system ẋ = A(t)x , 1969 .

[23]  Fernando Paganini,et al.  Internet congestion control , 2002 .

[24]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[25]  P. Curran,et al.  A unifying framework for the circle criterion and other quadratic stability criteria , 2003, 2003 European Control Conference (ECC).

[26]  O. Perron,et al.  Die Stabilitätsfrage bei Differentialgleichungen , 1930 .

[27]  U. Boscain,et al.  On the minimal degree of a common Lyapunov function for planar switched systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[28]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[29]  Daniel Liberzon,et al.  Common Lyapunov functions and gradient algorithms , 2004, IEEE Transactions on Automatic Control.

[30]  K. Narendra,et al.  A Geometrical Criterion for the Stability of Certain Nonlinear Nonautonomous Systems , 1964 .

[31]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ramesh Johari,et al.  End-to-end congestion control for the internet: delays and stability , 2001, TNET.

[33]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[34]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[35]  M. Fu,et al.  Piecewise Lyapunov functions for robust stability of linear time-varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[36]  G. Feng Controller design and analysis of uncertain piecewise-linear systems , 2002 .

[37]  Christos Yfoulis Stabilisation of Nonlinear Systems: The Piecewise Linear Approach , 2001 .

[38]  Hai Lin,et al.  Switched Linear Systems: Control and Design , 2006, IEEE Transactions on Automatic Control.

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  A. Michel Recent trends in the stability analysis of hybrid dynamical systems , 1999 .

[41]  K. Narendra,et al.  A sufficient condition for the existence of a common Lyapunov function for two second order linear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[42]  S. Pettersson,et al.  Stability and robustness for hybrid systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[43]  R. Decarlo,et al.  Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[44]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[45]  Roger W. Brockett,et al.  Hybrid Models for Motion Control Systems , 1993 .

[46]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[47]  Yasuaki Kuroe,et al.  A solution to the common Lyapunov function problem for continuous-time systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[48]  Glenn Vinnicombe,et al.  ON THE STABILITY OF NETWORKS OPERATING TCP-LIKE CONGESTION CONTROL , 2002 .

[49]  I. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element , 1964 .

[50]  A. Tsoi,et al.  A note on Brockett's variational technique and a conjecture in stability theory , 1974 .

[51]  Yasuyuki Funahashi,et al.  On the simultaneous diagonal stability of linear discrete-time systems , 1999 .

[52]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[53]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[54]  Douglas J. Leith,et al.  Positive matrices associated with synchronised communication networks , 2004 .

[55]  Robert Shorten,et al.  Comments on periodic and absolute stability for switched linear systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[56]  Douglas J. Leith,et al.  Control of Yaw Rate and Sideslip in 4-Wheel Steering Cars with Actuator Constraints , 2003, European Summer School on Multi-AgentControl.

[57]  Wilson J. Rugh,et al.  A stability result for linear parameter-varying systems , 1995 .

[58]  Patrick Brown,et al.  Resource sharing of TCP connections with different round trip times , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[59]  Donald F. Towsley,et al.  Analysis and design of controllers for AQM routers supporting TCP flows , 2002, IEEE Trans. Autom. Control..

[60]  Robert Shorten,et al.  Analysis and design of AIMD congestion control algorithms in communication networks , 2005, Autom..

[61]  N. Barabanov Absolute characteristic exponent of a class of linear nonstatinoary systems of differential equations , 1988 .

[62]  Joao P. Hespanha Stochastic Hybrid Modeling of On-Off TCP Flows , 2007 .

[63]  Injong Rhee,et al.  Binary increase congestion control (BIC) for fast long-distance networks , 2004, IEEE INFOCOM 2004.

[64]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[65]  François Baccelli,et al.  Interaction of TCP flows as billiards , 2005, IEEE/ACM Transactions on Networking.

[66]  J. Schinas,et al.  Stability of multivalued discrete dynamical systems , 1973 .

[67]  Robert Shorten,et al.  Switching and Learning in Feedback Systems, European Summer School on Multi-Agent Control, Maynooth, Ireland, September 8-10, 2003, Revised Lectures and Selected Papers , 2005, European Summer School on Multi-Agent Control.

[68]  I. H. Mufti,et al.  Absolute stability of nonlinear control systems , 1966 .

[69]  Fabian R. Wirth,et al.  On the rate of convergence of infinite horizon discounted optimal value functions , 2000 .

[70]  C. Desoer Frequency domain criteria for absolute stability , 1975, Proceedings of the IEEE.

[71]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[72]  João Pedro Hespanha,et al.  Hybrid Modeling of TCP Congestion Control , 2001, HSCC.

[73]  Daniel Liberzon,et al.  Lie-Algebraic Stability Criteria for Switched Systems , 2001, SIAM J. Control. Optim..

[74]  A. Stephen Morse,et al.  Switched nonlinear systems with state-dependent dwell-time , 2003, Syst. Control. Lett..

[75]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[76]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[77]  Thomas J. Laffey,et al.  Simultaneous triangularization of matrices—low rank cases and the nonderogatory case , 1978 .

[78]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[79]  Robert Shorten,et al.  On the 45° -Region and the uniform asymptotic stability of classes of second order parameter-varying and switched systems , 2002 .

[80]  A. Bergen,et al.  Describing functions revisited , 1975 .

[81]  A. Stephen Morse,et al.  Supervisory control with state-dependent dwell-time logic and constraints , 2004, Autom..

[82]  H. D. Jong,et al.  Qualitative simulation of the initiation of sporulation in Bacillus subtilis , 2004, Bulletin of mathematical biology.

[83]  Michael Margaliot,et al.  Absolute stability of third-order systems: A numerical algorithm , 2006, Autom..

[84]  Robert Shorten,et al.  On the Dynamic Instability of a Class of Switching System , 2000 .

[85]  K. Narendra,et al.  On the stability and existence of common Lyapunov functions for stable linear switching systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[86]  A. Polański Lyapunov function construction by linear programming , 1997, IEEE Trans. Autom. Control..

[87]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[88]  Fabian Wirth,et al.  On the calculation of time‐varying stability radii , 1998 .

[89]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[90]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[91]  Robert Shorten,et al.  A proof of global attractivity for a class of switching systems using a non‐quadratic Lyapunov approach , 2001 .

[92]  Fabian R. Wirth,et al.  A Converse Lyapunov Theorem for Linear Parameter-Varying and Linear Switching Systems , 2005, SIAM J. Control. Optim..

[93]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[94]  Yasuyuki Funahashi,et al.  Stability robustness for linear state space models—a Lyapunov mapping approach , 1997 .

[95]  H. Power,et al.  Improving the predictions of the circle criterion by combining quadratic forms , 1973 .

[96]  Andrea Bacciotti,et al.  Stabilization by means of state space depending switching rules , 2004, Syst. Control. Lett..

[97]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[98]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[99]  R. Shorten,et al.  Some results on the stability of positive switched linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[100]  Michael Margaliot,et al.  Necessary and sufficient conditions for absolute stability: the case of second-order systems , 2003 .

[101]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[102]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[103]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[104]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[105]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[106]  George Leitmann,et al.  Dynamics and Control , 2020, Fundamentals of Robotics.

[107]  Andrea Bacciotti,et al.  An invariance principle for nonlinear switched systems , 2005, Syst. Control. Lett..

[108]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[109]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[110]  Y. Funahashi,et al.  On a common quadratic Lyapunov function for widely distant systems , 1997, IEEE Trans. Autom. Control..

[111]  J. Geromel,et al.  Stability and stabilization of discrete time switched systems , 2006 .

[112]  Robert Shorten,et al.  Preliminary results on the stability of switched positive linear systems , 2004 .

[113]  D. Owens,et al.  Sufficient conditions for stability of linear time-varying systems , 1987 .

[114]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[115]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[116]  Christos Yfoulis,et al.  Stabilization of orthogonal piecewise linear systems using piecewise linear Lyapunov-like functions , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[117]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[118]  Guisheng Zhai,et al.  L2 Gain Analysis of Switched Systems with Average Dwell Time , 2000 .

[119]  H.H. Rosenbrock A Lyapunov function with applications to some nonlinear physical systems , 1963, Autom..

[120]  A. A. ten Dam,et al.  Unsolved problems in mathematical systems and control theory , 2004 .

[121]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[122]  Roger W. Brockett Optimization theory and the converse of the circle criterion. , 1965 .

[123]  Matteo Turilli,et al.  Dynamics of Control , 2007, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE '07).

[124]  M. Maesumi An efficient lower bound for the generalized spectral radius , 1996 .

[125]  Joao P. Hespanha,et al.  Stochastic Hybrid Systems: Application to Communication Networks , 2004, HSCC.

[126]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[127]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[128]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[129]  Ji-Feng Zhang,et al.  General lemmas for stability analysis of linear continuous-time systems with slowly time-varying parameters , 1993 .

[130]  Arjan van der Schaft,et al.  Open Problems in Mathematical Systems and Control Theory , 1999 .

[131]  Robert Shorten,et al.  A result on common quadratic Lyapunov functions , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[132]  Robert Shorten,et al.  THE GEOMETRY OF CONVEX CONES ASSOCIATED WITH THE LYAPUNOV INEQUALITY AND THE COMMON LYAPUNOV FUNCTION PROBLEM , 2005 .

[133]  Karl-Erik Årzén,et al.  Piecewise quadratic stability of fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[134]  José Luis Mancilla-Aguilar,et al.  An extension of LaSalle's invariance principle for switched systems , 2005, Syst. Control. Lett..

[135]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[136]  Hiromasa Haneda,et al.  Computer generated Lyapunov functions for a class of nonlinear systems , 1993 .

[137]  J. L. Mancilla-Aguilar,et al.  A converse Lyapunov theorem for nonlinear switched systems , 2000 .

[138]  V. Blondel,et al.  Switched systems that are periodically stable may be unstable , 2002 .

[139]  O. Bobyleva Piecewise-Linear Lyapunov Functions for Linear Stationary Systems , 2002 .

[140]  George R. Sell,et al.  Stability theory and Lyapunov's second method , 1963 .

[141]  A. Michel,et al.  PIECEWISE LYAPUNOV FUNCTIONS FOR SWITCHED SYSTEMS WITH AVERAGE DWELL TIME , 2000 .

[142]  Jan Willem Polderman,et al.  Balancing dwell times for switching linear systems , 2004 .

[143]  S. Pettersson,et al.  LMI for stability and robustness of hybrid systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[144]  Frank Kelly,et al.  Mathematical Modelling of the Internet , 2001 .

[145]  Robert K. Brayton,et al.  Stability of dynamical systems: A constructive approach , 1979 .

[146]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[147]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[148]  R Conti Quelques propriétés de l'opérateur d'évolution , 1967 .

[149]  Vishal Misra,et al.  Dynamic analysis of congested TCP networks , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[150]  Donald F. Towsley,et al.  A control theoretic analysis of RED , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[151]  Robert Shorten,et al.  Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time‐invariant systems , 2002 .

[152]  J. L. Mancilla-Aguilar,et al.  On converse Lyapunov theorems for ISS and iISS switched nonlinear systems , 2001 .

[153]  C. King,et al.  On the design of stable state dependent switching laws for single-input single-output systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[154]  Christopher V. Hollot,et al.  Nonlinear stability analysis for a class of TCP/AQM networks , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[155]  H. Kiendl,et al.  Vector norms as Lyapunov functions for linear systems , 1992 .

[156]  A. Polański,et al.  Further comments on "Vector norms as Lyapunov functions for linear systems" , 1998, IEEE Trans. Autom. Control..

[157]  M. Branicky Stability of switched and hybrid systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[158]  Andrzej Polanski,et al.  On absolute stability analysis by polyhedral Lyapunov functions , 2000, Autom..

[159]  Robert Shorten,et al.  On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form , 2003, IEEE Trans. Autom. Control..

[160]  João Pedro Hespanha,et al.  Uniform stability of switched linear systems: extensions of LaSalle's Invariance Principle , 2004, IEEE Transactions on Automatic Control.

[161]  John N. Tsitsiklis,et al.  Problem 10.2 When is a pair of matrices stable , 2009 .

[162]  and Charles K. Taft Reswick,et al.  Introduction to Dynamic Systems , 1967 .

[163]  Patrizio Colaneri,et al.  Robust stability of time varying polytopic systems , 2006, Syst. Control. Lett..

[164]  G. W. Hatfield,et al.  DNA microarrays and gene expression , 2002 .

[165]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[166]  G. Smirnov Introduction to the Theory of Differential Inclusions , 2002 .

[167]  Saverio Mascolo,et al.  Congestion control in high-speed communication networks using the Smith principle , 1999, Autom..

[168]  Christos Yfoulis,et al.  A new approach for estimating controllable and recoverable regions for systems with state and control constraints , 2002 .

[169]  Rama K. Yedavalli,et al.  Ultimate boundedness control of linear switched systems using controlled dwell time approach , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[170]  Christopher K. King,et al.  A singularity test for the existence of common quadratic Lyapunov functions for pairs of stable LTI systems , 2004, Proceedings of the 2004 American Control Conference.

[171]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[172]  A. Morse Supervisory control of families of linear set-point controllers , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[173]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[174]  R. Decarlo,et al.  Asymptotic stability of m-switched systems using Lyapunov functions , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[175]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[176]  A. Polański On infinity norms as Lyapunov functions for linear systems , 1995, IEEE Trans. Autom. Control..

[177]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[178]  Robert Shorten,et al.  A Numerical Technique for Stability Analysis of Linear Switched Systems , 2004, HSCC.

[179]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[180]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[181]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[182]  François Baccelli,et al.  AIMD, fairness and fractal scaling of TCP traffic , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[183]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[184]  Tatsushi Ooba,et al.  Two conditions concerning common quadratic Lyapunov functions for linear systems , 1997, IEEE Trans. Autom. Control..

[185]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[186]  R. Decarlo,et al.  Construction of piecewise Lyapunov functions for stabilizing switched systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[187]  Cheng-Fu Chen,et al.  On the absolute stability of nonlinear control systems , 1970 .

[188]  Eitan Altman,et al.  Analysis of two competing TCP/IP connections , 2002, Perform. Evaluation.

[189]  P. Ramadge,et al.  Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems , 1993, IEEE Trans. Autom. Control..

[190]  Dohy Hong,et al.  Many TCP User Asymptotic Analysis of the AIMD Model , 2001 .

[191]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .