Layer methods for stochastic Navier-Stokes equations using simplest characteristics

We propose and study a layer method for stochastic Navier-Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.

[1]  Roger Temam,et al.  Steady-state Navier–Stokes equations , 2001 .

[2]  S. Mehler Stochastic Flows And Stochastic Differential Equations , 2016 .

[3]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[4]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[5]  I. Gyöngy A note on Euler's Approximations , 1998 .

[6]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[7]  Michael V. Tretyakov,et al.  Discretization of forward–backward stochastic differential equations and related quasi-linear parabolic equations , 2007 .

[8]  G. Prato Kolmogorov Equations For Stochastic Pdes , 2004 .

[9]  G. N. Milstein,et al.  The probability approach to numerical solution of nonlinear parabolic equations , 2002 .

[10]  Philipp Dörsek,et al.  Semigroup Splitting and Cubature Approximations for the Stochastic Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[11]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[12]  Z. Brzeźniak,et al.  A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation , 2014 .

[13]  Jonathan C. Mattingly,et al.  Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.

[14]  I. Gyöngy,et al.  On the splitting-up method and stochastic partial differential equations , 2003 .

[15]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: An Introduction to Vortex Dynamics for Incompressible Fluid Flows , 2001 .

[16]  B. Rozovskii Stochastic Evolution Systems , 1990 .

[17]  G. N. Milstein,et al.  Solving parabolic stochastic partial differential equations via averaging over characteristics , 2009, Math. Comput..

[18]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[19]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[20]  M. V. Tretyakov,et al.  Layer methods for Navier-Stokes equations with additive noise , 2013, 1312.5887.

[21]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[22]  Yong Jung Kim A MATHEMATICAL INTRODUCTION TO FLUID MECHANICS , 2008 .

[23]  R. Khasminskii,et al.  Stationary solutions of nonlinear stochastic evolution equations , 1997 .

[24]  Jonathan C. Mattingly,et al.  Malliavin calculus for the stochastic 2D Navier Stokes equation , 2004 .

[25]  R. E. Street,et al.  The Scientific Papers of Sir Geoffrey Ingram Taylor , 1961 .

[26]  Shige Peng,et al.  Backward doubly stochastic differential equations and systems of quasilinear SPDEs , 1994 .

[27]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[28]  B. Rozovskii,et al.  Characteristics of degenerating second-order parabolic Ito equations , 1986 .

[29]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[30]  Andreas Prohl,et al.  Rates of Convergence for Discretizations of the Stochastic Incompressible Navier-Stokes Equations , 2012, SIAM J. Numer. Anal..

[31]  Michael V. Tretyakov,et al.  Solving the Dirichlet problem for Navier–Stokes equations by probabilistic approach , 2012 .

[32]  P. Chow Stochastic partial differential equations , 1996 .

[33]  G. Milstein,et al.  Probabilistic Methods for the Incompressible Navier–Stokes Equations With Space Periodic Conditions , 2013, Advances in Applied Probability.

[34]  B. L. Rozovskii,et al.  Global L2-solutions of stochastic Navier–Stokes equations , 2005 .

[35]  H. Bessaih,et al.  Splitting up method for the 2D stochastic Navier–Stokes equations , 2013, 1309.5633.

[36]  François Delarue,et al.  An interpolated stochastic algorithm for quasi-linear PDEs , 2008, Math. Comput..

[37]  Z. Brzeźniak,et al.  Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing , 2013 .

[38]  E. Pardouxt,et al.  Stochastic partial differential equations and filtering of diffusion processes , 1980 .

[39]  G. N. Milstein,et al.  An approximation method for Navier–Stokes equations based on probabilistic approach , 2003 .

[40]  R. Mikulevicius,et al.  On the Cauchy Problem for Stochastic Stokes Equations , 2002, SIAM J. Math. Anal..

[41]  Franco Flandoli,et al.  An Introduction to 3D Stochastic Fluid Dynamics , 2008 .

[42]  Nicolai V. Krylov,et al.  An Accelerated Splitting-up Method for Parabolic Equations , 2005, SIAM J. Math. Anal..

[43]  Michael V. Tretyakov,et al.  Monte Carlo methods for backward equations in nonlinear filtering , 2009, Advances in Applied Probability.