Inside a predator-prey model for multi-objective optimization: a second study

In this article, new variation operators for evolutionary multi-objective algorithms (EMOA) are proposed. On the basis of a predator-prey model theoretical considerations as well as empirical results lead to the development of a new recombination operator, which improves the approximation of the set of efficient solutions significantly. Furtheron, it is shown that applying speciation to the analysed model makes it possible to handle even more complex problems.

[1]  Thomas Philip Runarsson,et al.  An Asynchronous Parallel Evolution Strategy , 2003, Int. J. Comput. Intell. Appl..

[2]  Marco Tomassini,et al.  Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time (Natural Computing Series) , 2005 .

[3]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[4]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[5]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[6]  Dirk Wiesmann Anwendungsorientierter Entwurf evolutionärer Algorithmen , 2001 .

[7]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[8]  Xiaodong Li,et al.  A Real-Coded Predator-Prey Genetic Algorithm for Multiobjective Optimization , 2003, EMO.

[9]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[10]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[11]  Petros Koumoutsakos,et al.  Self-Adaptation for Multi-objective Evolutionary Algorithms , 2003, EMO.

[12]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[13]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[15]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[16]  A. Vicini,et al.  Sub-population policies for a parallel multiobjective genetic algorithm with applications to wing design , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[17]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[18]  Hans-Paul Schwefel,et al.  Design of Evolutionary Algorithms and Applications in Surface Reconstruction , 2003 .

[19]  Manfred Peschel,et al.  Ingenieurtechnische Entscheidungen : Modellbildung und Steuerung mit Hilfe der Polyoptimierung , 1980 .

[20]  Greg Turk,et al.  Generating random points in triangles , 1990 .

[21]  Jörn Mehnen,et al.  Using predators and preys in evolution strategies , 2005, GECCO '05.