On the horizons in constrained linear quadratic regulation

This paper revisits the problem of infinite horizon constrained linear quadratic regulation (LQR) for discrete-time systems. It is known that there exists a finite horizon such that the infinite horizon constrained LQR problem can be solved as a finite horizon constrained LQR problem. We first propose several algorithms to estimate the upper bound on the length of this finite horizon. Conservativeness and computational complexity of these algorithms are compared through numerical examples.

[1]  Tingshu Hu,et al.  Null controllable region of LTI discrete-time systems with input saturation , 2002, Autom..

[2]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[3]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[4]  Evanghelos Zafiriou,et al.  Robust Model Predictive Control of Processes with Hard Constraints. , 1990 .

[5]  Mark J. Damborg,et al.  Heuristically enhanced feedback control of constrained discrete-time linear systems , 1990, at - Automatisierungstechnik.

[6]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[7]  Anke Xue,et al.  Linear systems with input constraints: stability and optimality , 2005, Proceedings of the 2005, American Control Conference, 2005..

[8]  A. Jamak,et al.  Stabilization of Discrete-time Systems With Bounded Control Inputs , 2000 .

[9]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[10]  Graham C. Goodwin,et al.  Enlarged terminal sets guaranteeing stability of receding horizon control , 2002, Syst. Control. Lett..

[11]  M. Morari,et al.  Stability of model predictive control with mixed constraints , 1995, IEEE Trans. Autom. Control..

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[14]  L. Chisci,et al.  Fast algorithm for a constrained infinite horizon LQ problem , 1999 .