Multi-level visualisation using Gaussian process latent variable models
暂无分享,去创建一个
[1] Joaquin Quiñonero Candela,et al. Local distance preservation in the GP-LVM through back constraints , 2006, ICML.
[2] Neil D. Lawrence,et al. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..
[3] Peter Tiño,et al. Multiple Manifolds Learning Framework Based on Hierarchical Mixture Density Model , 2008, ECML/PKDD.
[4] Luca Maria Gambardella,et al. Learing Fine Motion by Using the Hierarchical Extended Kohonen Map , 1996, ICANN.
[5] Gregory Piatetsky-Shapiro,et al. High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .
[6] Ben Shneiderman,et al. Inventing Discovery Tools: Combining Information Visualization with Data Mining1 , 2001, Inf. Vis..
[7] A. Vellido,et al. Review of Hierarchical Models for Data Clustering and Visualization , 2004 .
[8] David A. Lee,et al. Predicting protein function from sequence and structure , 2007, Nature Reviews Molecular Cell Biology.
[9] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[10] C. Bishop,et al. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks , 1993 .
[11] Tomoharu Iwata,et al. Warped Mixtures for Nonparametric Cluster Shapes , 2012, UAI.
[12] Risto Miikkulainen,et al. Script Recognition with Hierarchical Feature Maps , 1992 .
[13] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[14] Fionn Murtagh,et al. Methods of Hierarchical Clustering , 2011, ArXiv.
[15] Neil D. Lawrence,et al. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.
[16] Jarkko Venna,et al. Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study , 2001, ICANN.
[17] Kai Hormann,et al. The point in polygon problem for arbitrary polygons , 2001, Comput. Geom..
[18] Christopher M. Bishop,et al. GTM: The Generative Topographic Mapping , 1998, Neural Computation.
[19] Michael E. Tipping,et al. NeuroScale: Novel Topographic Feature Extraction using RBF Networks , 1996, NIPS.
[20] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .
[21] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[22] Jouko Lampinen,et al. Clustering properties of hierarchical self-organizing maps , 1992, Journal of Mathematical Imaging and Vision.
[23] Darren R. Flower,et al. Novel visualization methods for protein data , 2012, 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[24] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[25] Herbert A. Simon,et al. Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987, Cogn. Sci..
[26] Peter Tiño,et al. Hierarchical GTM: Constructing Localized Nonlinear Projection Manifolds in a Principled Way , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[27] Tobias Schreck,et al. Techniques for Precision-Based Visual Analysis of Projected Data , 2010, Inf. Vis..
[28] Adrian Corduneanu,et al. Variational Bayesian Model Selection for Mixture Distributions , 2001 .
[29] Christopher M. Bishop,et al. A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..