Robot navigation on star worlds using a single-step Navigation Transformation

This work presents a single-step diffeomorphic transformation from a known star world to a trivial domain called the point world, where the navigation task is reduced to connecting the images of the initial and destination configurations by a straight line. Obstacle potential functions – derived using Zenkin’s formulas – are used to define a transformation activation region around each obstacle. Configurations in this region are radially mapped with respect to the center of the corresponding obstacle. The proposed transformation guarantees almost global navigation. The provided theoretical results are backed by analytical proofs, while the effectiveness of the method is demonstrated by a series of simulation studies.

[1]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[2]  Omur Arslan,et al.  Sensor-based reactive navigation in unknown convex sphere worlds , 2018, Int. J. Robotics Res..

[3]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[4]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[5]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[6]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Daniel E. Koditschek,et al.  The construction of analytic diffeomorphisms for exact robot navigation on star worlds , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[8]  Daniel E. Koditschek,et al.  Exact robot navigation using power diagrams , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Daniel E. Koditschek,et al.  Exact robot navigation in geometrically complicated but topologically simple spaces , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[10]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[11]  Savvas G. Loizou,et al.  The Navigation Transformation , 2017, IEEE Transactions on Robotics.

[12]  Daniel E. Koditschek,et al.  Level sets and stable manifold approximations for perceptually driven non-holonomically constrained navigation , 2005, Adv. Robotics.

[13]  Kostas J. Kyriakopoulos,et al.  Adjustable navigation functions for unknown sphere worlds , 2011, IEEE Conference on Decision and Control and European Control Conference.

[14]  Savvas G. Loizou,et al.  Avoiding Sets of Measure-Zero in Navigation Transformation Based Controllers , 2018, Advances in Service and Industrial Robotics.

[15]  O. V. Zenkin Analytical description of geometrical shapes , 1970 .

[16]  Kostas J. Kyriakopoulos,et al.  Nonholonomic motion planning for mobile manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Noah J. Cowan,et al.  Geometric visual servoing , 2005, IEEE Transactions on Robotics.

[18]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[19]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[20]  Dimos V. Dimarogonas,et al.  Decentralized feedback stabilization of multiple nonholonomic agents , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  Kostas J. Kyriakopoulos,et al.  Closed loop navigation for multiple holonomic vehicles , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.