In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage

[1]  Zhiyong Lu,et al.  Higher Symmetry Multinuclear Clusters of Metal-Organic Frameworks for Highly Selective CO2 Capture. , 2018, Journal of the American Chemical Society.

[2]  Ruopian Fang,et al.  Metal–Organic Frameworks (MOFs)‐Derived Nitrogen‐Doped Porous Carbon Anchored on Graphene with Multifunctional Effects for Lithium–Sulfur Batteries , 2018 .

[3]  Hong Shang,et al.  Low‐Temperature Growth of All‐Carbon Graphdiyne on a Silicon Anode for High‐Performance Lithium‐Ion Batteries , 2018, Advanced materials.

[4]  Ya‐Xia Yin,et al.  SiOx Encapsulated in Graphene Bubble Film: An Ultrastable Li‐Ion Battery Anode , 2018, Advanced materials.

[5]  Xiao‐Chen Liu,et al.  Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries. , 2018, Angewandte Chemie.

[6]  Jung Kyoo Lee,et al.  Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes. , 2018, ACS nano.

[7]  Zhaoping Liu,et al.  Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. , 2018, ACS nano.

[8]  Liang Wang,et al.  Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High‐Performance and Safe Lithium Storage , 2017, Advanced materials.

[9]  Lei Zhang,et al.  An All‐Integrated Anode via Interlinked Chemical Bonding between Double‐Shelled–Yolk‐Structured Silicon and Binder for Lithium‐Ion Batteries , 2017, Advanced materials.

[10]  R. Riedel,et al.  Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries. , 2017, ACS nano.

[11]  Donghui Long,et al.  Colloidal Synthesis of Silicon-Carbon Composite Material for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[12]  Kwang Soo Kim,et al.  Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. , 2017, ACS nano.

[13]  Bing Ji,et al.  Ultrafine TiO2 Confined in Porous-Nitrogen-Doped Carbon from Metal-Organic Frameworks for High-Performance Lithium Sulfur Batteries. , 2017, ACS applied materials & interfaces.

[14]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[15]  Zhichuan J. Xu,et al.  Novel Preparation of N‐Doped SnO2 Nanoparticles via Laser‐Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties , 2017, Advanced materials.

[16]  Jian Yang,et al.  Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[17]  Kyeongse Song,et al.  Carbon‐Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy‐Density Li‐Ion Battery , 2016 .

[18]  A. Manthiram,et al.  Combining Nitrogen-Doped Graphene Sheets and MoS2 : A Unique Film-Foam-Film Structure for Enhanced Lithium Storage. , 2016, Angewandte Chemie.

[19]  K. Komvopoulos,et al.  Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries , 2016, Nature Communications.

[20]  Gurpreet Singh,et al.  Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries , 2016, Nature Communications.

[21]  Abhijeet K. Chaudhari,et al.  Photonic hybrid crystals constructed from in situ host-guest nanoconfinement of a light-emitting complex in metal-organic framework pores. , 2016, Nanoscale.

[22]  Andreas M. Nyström,et al.  One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. , 2016, Journal of the American Chemical Society.

[23]  Chongmin Wang,et al.  Inward lithium-ion breathing of hierarchically porous silicon anodes , 2015, Nature Communications.

[24]  U. Paik,et al.  Graphene as an Interfacial Layer for Improving Cycling Performance of Si Nanowires in Lithium-Ion Batteries. , 2015, Nano letters.

[25]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[26]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[27]  Qian Zhang,et al.  An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries. , 2015, ChemSusChem.

[28]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[29]  J. Navarro,et al.  Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours. , 2014, Chemical Society reviews.

[30]  Donghai Wang,et al.  Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries , 2014 .

[31]  Xiaoshi Lang,et al.  A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries , 2014 .

[32]  Junhong Chen,et al.  Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode , 2014, Advanced materials.

[33]  R. Banerjee,et al.  Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. , 2013, Nanoscale.

[34]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[35]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[36]  Yan‐Bing He,et al.  The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery , 2013 .

[37]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[38]  J. C. Wren,et al.  Gamma-radiolysis-assisted cobalt oxide nanoparticle formation. , 2013, Physical chemistry chemical physics : PCCP.

[39]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[40]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[41]  Ya‐Xia Yin,et al.  Self‐Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium‐Ion Batteries , 2012 .

[42]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[43]  Yan‐Bing He,et al.  Could graphene construct an effective conducting network in a high-power lithium ion battery? , 2012 .

[44]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[45]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[46]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[47]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[48]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[49]  Juan Herranz,et al.  Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. , 2011, Nature communications.

[50]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[51]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[52]  K. Müllen,et al.  Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. , 2010, Angewandte Chemie.

[53]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[54]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[55]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[56]  Svitlana Pylypenko,et al.  Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. , 2009, ACS applied materials & interfaces.

[57]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[58]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[59]  F. Gao,et al.  Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries , 2008 .

[60]  M. Armand,et al.  Building better batteries , 2008, Nature.

[61]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[62]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[63]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[64]  Kang Xu,et al.  EIS study on the formation of solid electrolyte interface in Li-ion battery , 2006 .

[65]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[66]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[67]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[68]  J. Xie,et al.  Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes. , 2014, ACS applied materials & interfaces.

[69]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[70]  D. S. Sutrave,et al.  MOCVD OF COBALT OXIDE USING CO-ACTYLACETONATE AS PRECURSOR: THIN FILM DEPOSITION AND STUDY OF PHYSICAL PROPERTIES , 2022 .