A simple framework to justify linear response theory

The use of linear response theory for forced dissipative stochastic dynamical systems through the fluctuation dissipation theorem is an attractive way to study climate change systematically among other applications. Here, a mathematically rigorous justification of linear response theory for forced dissipative stochastic dynamical systems is developed. The main results are formulated in an abstract setting and apply to suitable systems, in finite and infinite dimensions, that are of interest in climate change science and other applications.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  P. H. Müller,et al.  T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .

[3]  A. Tate Statistical dynamics , 1970 .

[4]  C. Leith Climate Response and Fluctuation Dissipation , 1975 .

[5]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[6]  K. Elworthy,et al.  Flows of stochastic dynamical systems: The functional analytic approach , 1983 .

[7]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[8]  M. Toda,et al.  In: Statistical physics II , 1985 .

[9]  Velimir Jurdjevic,et al.  Polynomial control systems , 1985 .

[10]  J. Norris Simplified Malliavin calculus , 1986 .

[11]  H. Sussmann A general theorem on local controllability , 1987 .

[12]  Minoru Toda,et al.  Springer Series in Solid-State Sciences , 1989 .

[13]  David Ruelle,et al.  The thermodynamic formalism for expanding maps , 1989 .

[14]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[15]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[16]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[17]  Lai-Sang Young,et al.  On the spectra of randomly perturbed expanding maps , 1993 .

[18]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[19]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[20]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[21]  D. Ruelle Differentiation of SRB States , 1997 .

[22]  Radu Balescu,et al.  Statistical dynamics: matter out of equilibrium , 1997 .

[23]  Gerhard Keller,et al.  Stability of the spectrum for transfer operators , 1999 .

[24]  T. Palmer A nonlinear dynamical perspective on model error: A proposal for non‐local stochastic‐dynamic parametrization in weather and climate prediction models , 2001 .

[25]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[26]  Jonathan C. Mattingly,et al.  Ergodicity for the Navier‐Stokes equation with degenerate random forcing: Finite‐dimensional approximation , 2001 .

[27]  V. P. Dymnikov,et al.  Construction of the linear response operator of an atmospheric general circulation model to small external forcing , 2002 .

[28]  M. Romito Ergodicity of the Finite Dimensional Approximation of the 3D Navier–Stokes Equations Forced by a Degenerate Noise , 2002 .

[29]  Tamer Basar,et al.  On nonlinear controllability of homogeneous systems linear in control , 2003, IEEE Trans. Autom. Control..

[30]  Dmitry Dolgopyat,et al.  On differentiability of SRB states for partially hyperbolic systems , 2004 .

[31]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[32]  Jonathan C. Mattingly,et al.  Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.

[33]  Carlangelo Liverani,et al.  Banach spaces adapted to Anosov systems , 2005, Ergodic Theory and Dynamical Systems.

[34]  Artur Avila,et al.  Exponential mixing for the Teichmüller flow , 2005 .

[35]  Andrey Sarychev,et al.  Navier–Stokes Equations: Controllability by Means of Low Modes Forcing , 2005 .

[36]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[37]  Carlangelo Liverani,et al.  Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties , 2006, math/0606722.

[38]  B. Z. Moroz,et al.  london mathematical society lecture note series , 2007 .

[39]  Carlangelo Liverani,et al.  Smooth Anosov flows: Correlation spectra and stability , 2007 .

[40]  Andrew J. Majda,et al.  Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems , 2007 .

[41]  Andrey Gritsun,et al.  Climate Response Using a Three-Dimensional Operator Based on the Fluctuation–Dissipation Theorem , 2007 .

[42]  Andrew J. Majda,et al.  Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem , 2008 .

[43]  Jonathan C. Mattingly,et al.  Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.

[44]  Martin Hairer,et al.  A Theory of Hypoellipticity and Unique Ergodicity for Semilinear Stochastic PDEs , 2008, 0808.1361.

[45]  Andrew J. Majda,et al.  New Approximations and Tests of Linear Fluctuation-Response for Chaotic Nonlinear Forced-Dissipative Dynamical Systems , 2008, J. Nonlinear Sci..

[46]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  V. Baladi Linear response despite critical points , 2008 .

[48]  V. Baladi,et al.  Corrigendum: Linear response formula for piecewise expanding unimodal maps , 2007, 0705.3383.

[49]  Andrew J. Majda,et al.  A New Algorithm for Low-Frequency Climate Response , 2009 .

[50]  Jonathan C. Mattingly,et al.  Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations , 2009, 0902.4495.

[51]  Andrew J Majda,et al.  High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability , 2009, Proceedings of the National Academy of Sciences.

[52]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[53]  Andrew J. Majda,et al.  Linear response theory for statistical ensembles in complex systems with time-periodic forcing , 2010 .

[54]  Andrew J. Majda,et al.  Low-Frequency Climate Response and Fluctuation–Dissipation Theorems: Theory and Practice , 2010 .

[55]  Jonathan C. Mattingly,et al.  Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.