Dynamics and control in power grids and complex oscillator networks

Dynamics and Control in Power Grids and Complex Oscillator Networks Florian Anton Dorfler The efficient production, transmission and distribution of electrical power underpins our technological civilization. Public policy and environmental concerns are leading to an increasing adoption of renewable energy sources and the deregulation of energy markets. These trends, together with an ever-growing power demand, are causing power networks to operate increasingly closer to their stability margins. Recent scientific advances in complex networks and cyber-physical systems along with the technological re-instrumentation of the grid provide promising opportunities to handle the challenges facing our future energy supply. In this thesis, we discuss the synchronization problem in power networks, which is central to their operation and functionality. We identify and exploit a close connection between the mathematical models for power networks and complex oscillator networks. Our main contributions are concise, sharp, and purely-algebraic conditions that relate synchronization in a power grid to graph-theoretical properties of the underlying electric network. Our novel conditions hold for arbitrary interconnection topologies and network parameters, and they significantly improve upon

[1]  R. Ho Algebraic Topology , 2022 .

[2]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[3]  Jan Lunze,et al.  Complete synchronization of Kuramoto oscillators , 2011 .

[4]  P. McEuen,et al.  Synchronization of micromechanical oscillators using light , 2011, IEEE Photonic Society 24th Annual Meeting.

[5]  Seung‐Yeal Ha,et al.  Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model , 2012 .

[6]  Daido,et al.  Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. , 1992, Physical review letters.

[7]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[8]  Ian A. Hiskens,et al.  Analysis tools for power systems-contending with nonlinearities , 1995, Proc. IEEE.

[9]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[10]  Michael Chertkov,et al.  Sparsity-Promoting Optimal Wide-Area Control of Power Networks , 2013, IEEE Transactions on Power Systems.

[11]  Tetsuya Ogata,et al.  Human-robot ensemble between robot thereminist and human percussionist using coupled oscillator model , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Florian Dörfler,et al.  On the Critical Coupling for Kuramoto Oscillators , 2010, SIAM J. Appl. Dyn. Syst..

[13]  Mandel,et al.  Global coupling with time delay in an array of semiconductor lasers , 2000, Physical review letters.

[14]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[15]  A.A. Abidi,et al.  The Quadrature LC Oscillator: A Complete Portrait Based on Injection Locking , 2007, IEEE Journal of Solid-State Circuits.

[16]  Michael Chertkov,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[17]  A. Winfree The geometry of biological time , 1991 .

[18]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[19]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[20]  Steven H. Strogatz,et al.  Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies , 1988 .

[21]  Florian Dörfler,et al.  Cyber-physical attacks in power networks: Models, fundamental limitations and monitor design , 2011, IEEE Conference on Decision and Control and European Control Conference.

[22]  S. Skar,et al.  Stability of multi-machine power systems with nontrivial transfer conductances , 1980 .

[23]  K. Dessouky,et al.  Network synchronization , 1985, Proceedings of the IEEE.

[24]  D. Koditschek Strict Global Lyapunov Functions for Mechanical Systems , 1988, 1988 American Control Conference.

[25]  Wenxue Wang,et al.  Kuramoto Models, Coupled Oscillations and laser networks , 2007, SICE Annual Conference 2007.

[26]  M. Hastings,et al.  Scaling in small-world resistor networks , 2005, cond-mat/0508056.

[27]  Alain Sarlette,et al.  Consensus Optimization on Manifolds , 2008, SIAM J. Control. Optim..

[28]  Newton G. Bretas,et al.  Synchronism versus stability in power systems , 1999 .

[29]  M. Slemrod,et al.  A fast–slow dynamical systems theory for the Kuramoto type phase model , 2011 .

[30]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[31]  Frank Allgöwer,et al.  Frequency synchronization and phase agreement in Kuramoto oscillator networks with delays , 2012, Autom..

[32]  Rodolphe Sepulchre,et al.  Consensus on Nonlinear Spaces , 2010 .

[33]  G. Filatrella,et al.  Analysis of a power grid using a Kuramoto-like model , 2007, 0705.1305.

[34]  Eduardo Sontag Contractive Systems with Inputs , 2010 .

[35]  O. Alsaç,et al.  DC Power Flow Revisited , 2009, IEEE Transactions on Power Systems.

[36]  Joe H. Chow,et al.  Time scale modeling of sparse dynamic networks , 1985 .

[37]  Carlos J. Tavora,et al.  Stability Analysis of Power Systems , 1972 .

[38]  Seung-Yeal Ha,et al.  Flocking and synchronization of particle models , 2010 .

[39]  Steven H. Strogatz,et al.  The Spectrum of the Partially Locked State for the Kuramoto Model , 2007, J. Nonlinear Sci..

[40]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[41]  P. Kundur,et al.  Power system stability and control , 1994 .

[42]  Sergio Barbarossa,et al.  Decentralized Maximum-Likelihood Estimation for Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems , 2006, IEEE Transactions on Signal Processing.

[43]  Steven H. Strogatz,et al.  Cellular Construction of a Circadian Clock: Period Determination in the Suprachiasmatic Nuclei , 1997, Cell.

[44]  J. Pantaleone,et al.  Stability of incoherence in an isotropic gas of oscillating neutrinos , 1998 .

[45]  Przemyslaw Perlikowski,et al.  Synchronization of clocks , 2012 .

[46]  K. Mauch,et al.  Parallel operation of single phase inverter modules with no control interconnections , 1997, Proceedings of APEC 97 - Applied Power Electronics Conference.

[47]  Hans Schneider,et al.  Inertia theorems for matrices: The semidefinite case , 1963 .

[48]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[49]  Pablo Monzon,et al.  Almost Global Synchronization of Symmetric Kuramoto Coupled Oscillators , 2008 .

[50]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[51]  Pierre Rouchon,et al.  Consensus in non-commutative spaces , 2010, 49th IEEE Conference on Decision and Control (CDC).

[52]  Heidi M. Rockwood,et al.  Huygens's clocks , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  Elena Panteley,et al.  Linear reformulation of the Kuramoto model: Asymptotic mapping and stability properties , 2012, 2013 European Control Conference (ECC).

[54]  R. Adapa,et al.  Structural stability in power systems-effect of load models , 1993 .

[55]  Josep M. Guerrero,et al.  Stability, power sharing, & distributed secondary control in droop-controlled microgrids , 2013, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[56]  Carlos J. Tavora,et al.  Equilibrium Analysis of Power Systems , 1972 .

[57]  Yun Zou,et al.  Theoretical foundation of the controlling UEP method for direct transient-stability analysis of network-preserving power system models , 2003 .

[58]  Edward Ott,et al.  Theoretical mechanics: crowd synchrony on the Millennium Bridge. , 2005 .

[59]  Ali Nabi,et al.  Single input optimal control for globally coupled neuron networks , 2011, Journal of neural engineering.

[60]  Johan A K Suykens,et al.  Introduction to Focus Issue: synchronization in complex networks. , 2008, Chaos.

[61]  Andrew J. Korsak,et al.  On the Question of Uniqueness of Stable Load-Flow Solutions , 1972 .

[62]  Hsiao-Dong Chiang,et al.  Constructing analytical energy functions for lossless network-reduction power system models: Framework and new developments , 1999 .

[63]  Soon-Jo Chung,et al.  On synchronization of coupled Hopf-Kuramoto oscillators with phase delays , 2010, 49th IEEE Conference on Decision and Control (CDC).

[64]  Luca Scardovi,et al.  Clustering and synchronization in phase models with state dependent coupling , 2010, 49th IEEE Conference on Decision and Control (CDC).

[65]  H. Attouch,et al.  ASYMPTOTIC BEHAVIOR OF SECOND-ORDER DISSIPATIVE EVOLUTION EQUATIONS COMBINING POTENTIAL WITH NON-POTENTIAL EFFECTS ∗ , 2009, 0905.0092.

[66]  Mario di Bernardo,et al.  Stability of networked systems: A multi-scale approach using contraction , 2010, 49th IEEE Conference on Decision and Control (CDC).

[67]  Jovan Ilic,et al.  Frequency Instability Problems in North American Interconnections , 2011 .

[68]  P. Holmes,et al.  Globally Coupled Oscillator Networks , 2003 .

[69]  Peter A. Tass,et al.  Desynchronization and chaos in the kuramoto model , 2005 .

[70]  Newton G. Bretas,et al.  Direct methods for transient stability analysis in power systems: state of art and future perspectives , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[71]  Alessio Franci,et al.  Phase-locking between Kuramoto oscillators: Robustness to time-varying natural frequencies , 2010, 49th IEEE Conference on Decision and Control (CDC).

[72]  Frank Allgöwer,et al.  Consensus reaching in multi-agent packet-switched networks with non-linear coupling , 2009, Int. J. Control.

[73]  Ian Dobson,et al.  Voltage collapse precipitated by the immediate change in stability when generator reactive power limits are encountered , 1992 .

[74]  Alain Sarlette,et al.  Synchronization and balancing on the N-torus , 2007, Syst. Control. Lett..

[75]  Franco Robledo,et al.  The wheels: an infinite family of bi-connected planar synchronizing graphs , 2010, 2010 5th IEEE Conference on Industrial Electronics and Applications.

[76]  C. C. Chu,et al.  Transient dynamics of electric power systems : Direct stability assessment and chaotic motion , 1996 .

[77]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[78]  D. Roberts,et al.  Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[80]  B. Ermentrout,et al.  An adaptive model for synchrony in the firefly Pteroptyx malaccae , 1991 .

[81]  Ian A. Gravagne,et al.  On the structure of minimum effort solutions with application to kinematic redundancy resolution , 2000, IEEE Trans. Robotics Autom..

[82]  R. De Luca Strongly coupled overdamped pendulums , 2008 .

[83]  I. Gutman,et al.  Generalized inverse of the Laplacian matrix and some applications , 2004 .

[84]  F. Bullo,et al.  Spectral Analysis of Synchronization in a Lossless Structure-Preserving Power Network Model , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[85]  P. Olver Nonlinear Systems , 2013 .

[86]  Mark W. Spong,et al.  On Exponential Synchronization of Kuramoto Oscillators , 2009, IEEE Transactions on Automatic Control.

[87]  Florian Dörfler,et al.  Distributed detection of cyber-physical attacks in power networks: A waveform relaxation approach , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[88]  Lee Xavier DeVille,et al.  Transitions amongst synchronous solutions in the stochastic Kuramoto model , 2012 .

[89]  Oliver Mason,et al.  On Computing the Critical Coupling Coefficient for the Kuramoto Model on a Complete Bipartite Graph , 2009, SIAM J. Appl. Dyn. Syst..

[90]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[91]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[92]  A. Lichtenberg,et al.  Self-synchronization of coupled oscillators with hysteretic responses , 1997 .

[93]  Seung-Yeal Ha,et al.  Emergent behaviour of a generalized Viscek-type flocking model , 2010 .

[94]  Thilo Gross,et al.  Graphical notation reveals topological stability criteria for collective dynamics in complex networks. , 2010, Physical review letters.

[95]  M. Timme,et al.  Braess's paradox in oscillator networks, desynchronization and power outage , 2012 .

[96]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[97]  I. Kamwa,et al.  Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance , 2005, IEEE Transactions on Power Systems.

[98]  S. Corsi,et al.  General blackout in Italy Sunday September 28, 2003, h. 03:28:00 , 2004, IEEE Power Engineering Society General Meeting, 2004..

[99]  Hayato Chiba,et al.  A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model , 2010, Ergodic Theory and Dynamical Systems.

[100]  Prashant G. Mehta,et al.  Filtering with rhythms: Application to estimation of gait cycle , 2012, 2012 American Control Conference (ACC).

[101]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[102]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[103]  E. Panteley,et al.  On frequency synchronization of Kuramoto model with non-symmetric interconnection structure , 2012, CCCA12.

[104]  F. Bullo,et al.  Novel insights into lossless AC and DC power flow , 2013, 2013 IEEE Power & Energy Society General Meeting.

[105]  Hsiao-Dong Chiang,et al.  On the existence and uniqueness of load flow solution for radial distribution power networks , 1990 .

[106]  N. Biggs Algebraic Graph Theory: COLOURING PROBLEMS , 1974 .

[107]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[108]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[109]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion With Limited Communication , 2008, IEEE Transactions on Automatic Control.

[110]  Frank Allgöwer,et al.  Multi-agent speed consensus via delayed position feedback with application to Kuramoto oscillators , 2009, 2009 European Control Conference (ECC).

[111]  Peter W. Sauer,et al.  Maximum loadability and voltage stability in power systems , 1993 .

[112]  Florian Dörfler,et al.  Cyber-physical security via geometric control: Distributed monitoring and malicious attacks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[113]  Hsiao-Dong Chiang,et al.  Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system. Models with small transfer conductances , 1995 .

[114]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[115]  Mohammad Shahidehpour,et al.  The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee , 1999 .

[116]  D. Aeyels,et al.  Stability of phase locking in a ring of unidirectionally coupled oscillators , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[117]  Sadatoshi Kumagai,et al.  Limits On Power Injections For Power Flow Equations To Have Secure Solutions , 2015 .

[118]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[119]  E. Ott,et al.  Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.

[120]  Francesco Bullo,et al.  Synchronization and power sharing for droop-controlled inverters in islanded microgrids , 2012, Autom..

[121]  L. Moreau,et al.  Stability of continuous-time distributed consensus algorithms , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[122]  Richard Taylor,et al.  Synchronization Properties of Trees in the Kuramoto Model , 2012, SIAM J. Appl. Dyn. Syst..

[123]  Francesco Bullo,et al.  Distributed Control of Robotic Networks , 2009 .

[124]  Enrique Mallada,et al.  Distributed clock synchronization: Joint frequency and phase consensus , 2011, IEEE Conference on Decision and Control and European Control Conference.

[125]  Rodrigo F. Cádiz,et al.  Generating music from flocking dynamics , 2012, 2012 American Control Conference (ACC).

[126]  Luca Schenato,et al.  A Survey on Distributed Estimation and Control Applications Using Linear Consensus Algorithms , 2010 .

[127]  Insoo Ha,et al.  Analysis on a Minimum Infinity-norm Solution for Kinematically Redundant Manipulators , 2002 .

[128]  S. Strogatz Exploring complex networks , 2001, Nature.

[129]  Seung‐Yeal Ha,et al.  Complete synchronization of Kuramoto oscillators with finite inertia , 2011 .

[130]  Dirk Aeyels,et al.  Existence of Partial Entrainment and Stability of Phase Locking Behavior of Coupled Oscillators , 2004 .

[131]  N. Bretas,et al.  Damping estimation for multi-swing transient stability analysis: the OMIB case , 1998, POWERCON '98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151).

[132]  H. Happ Power system control and stability , 1979, Proceedings of the IEEE.

[133]  Pravin Varaiya,et al.  Smart Operation of Smart Grid: Risk-Limiting Dispatch , 2011, Proceedings of the IEEE.

[134]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[135]  Rodolphe Sepulchre,et al.  Contraction of monotone phase-coupled oscillators , 2012, Syst. Control. Lett..

[136]  F.F. Wu,et al.  Direct methods for transient stability analysis of power systems: Recent results , 1985, Proceedings of the IEEE.

[137]  A.R. Bergen,et al.  A Structure Preserving Model for Power System Stability Analysis , 1981, IEEE Transactions on Power Apparatus and Systems.

[138]  D. Koditschek The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems , 1989 .

[139]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[140]  Shinya Aoi,et al.  Locomotion Control of a Biped Robot Using Nonlinear Oscillators , 2005, Auton. Robots.

[141]  John L Hudson,et al.  Emerging Coherence in a Population of Chemical Oscillators , 2002, Science.

[142]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[143]  David J. Hill,et al.  Power systems as dynamic networks , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[144]  James M. Bower,et al.  The Role of Axonal Delay in the Synchronization of Networks of Coupled Cortical Oscillators , 1997, Journal of Computational Neuroscience.

[145]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[146]  Lee DeVille,et al.  Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model. , 2011, Chaos.

[147]  F. Galiana,et al.  Quantitative Analysis of Steady State Stability in Power Networks , 1981, IEEE Transactions on Power Apparatus and Systems.

[148]  Yongqiang Wang,et al.  Increasing Sync Rate of Pulse-Coupled Oscillators via Phase Response Function Design: Theory and Application to Wireless Networks , 2012, IEEE Transactions on Control Systems Technology.

[149]  Felix F. Wu,et al.  Stability of nonlinear systems described by a second-order vector differential equation , 1988 .

[150]  Marc Timme,et al.  Self-organized synchronization in decentralized power grids. , 2012, Physical review letters.

[151]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[152]  Florian Dörfler,et al.  Kron Reduction of Graphs With Applications to Electrical Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[153]  J. Kurths,et al.  Synchronization in Oscillatory Networks , 2007 .

[154]  Peter A Tass,et al.  Phase chaos in coupled oscillators. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[155]  Manfredi Maggiore,et al.  State Agreement for Continuous-Time Coupled Nonlinear Systems , 2007, SIAM J. Control. Optim..

[156]  Y. Kuramoto Collective synchronization of pulse-coupled oscillators and excitable units , 1991 .

[157]  Frank Allgöwer,et al.  Hierarchical Clustering of Dynamical Networks Using a Saddle-Point Analysis , 2013, IEEE Transactions on Automatic Control.

[158]  Tara Javidi,et al.  Integration of communication and control using discrete time Kuramoto models for multivehicle coordination over broadcast networks , 2008, IEEE J. Sel. Areas Commun..

[159]  Oliver Mason,et al.  Global Phase-Locking in Finite Populations of Phase-Coupled Oscillators , 2007, SIAM J. Appl. Dyn. Syst..

[160]  A. Barabasi,et al.  Physics of the rhythmic applause. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[161]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[162]  W. H. Kersting Radial distribution test feeders , 1991 .

[163]  Florian Dörfler,et al.  Voltage stabilization in microgrids via quadratic droop control , 2013, 52nd IEEE Conference on Decision and Control.

[164]  Seung-Yeal Ha,et al.  On the Basin of Attractors for the Unidirectionally Coupled Kuramoto Model in a Ring , 2012, SIAM J. Appl. Math..

[165]  Felix F. Wu,et al.  Foundations of the potential energy boundary surface method for power system transient stability analysis , 1988 .

[166]  R. Adapa,et al.  Control of parallel connected inverters in stand-alone AC supply systems , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[167]  Bruce Francis Distributed Control of Autonomous Mobile Robots , 2011 .

[168]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[169]  J. Pantaleone,et al.  Synchronization of metronomes , 2002 .

[170]  Florian Dörfler,et al.  Exploring synchronization in complex oscillator networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[171]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[172]  Florian Dörfler,et al.  Continuous-Time Distributed Observers With Discrete Communication , 2013, IEEE Journal of Selected Topics in Signal Processing.

[173]  Frank Allgöwer,et al.  Duality and network theory in passivity-based cooperative control , 2013, Autom..

[174]  M. Ilić Network theoretic conditions for existence and uniqueness of steady state solutions to electric power circuits , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[175]  Michael Chertkov,et al.  Sparse and optimal wide-area damping control in power networks , 2013, 2013 American Control Conference.

[176]  Charles Concordia,et al.  Power System Stability , 1985, IEEE Power Engineering Review.

[177]  R. Sepulchre,et al.  Oscillator Models and Collective Motion , 2007, IEEE Control Systems.

[178]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[179]  A. Kalloniatis,et al.  From incoherence to synchronicity in the network Kuramoto model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[180]  Seung-Yeal Ha,et al.  On the complete synchronization of the Kuramoto phase model , 2010 .

[181]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[182]  P. Sacré,et al.  Systems analysis of oscillator models in the space of phase response curves , 2013 .

[183]  Carlos J. Tavora,et al.  Characterization of Equilibrium and Stability in Power Systems , 1972 .

[184]  Chin-Kun Hu,et al.  Influence of noise on the synchronization of the stochastic Kuramoto model. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[185]  David J. Hill,et al.  Cutset stability criterion for power systems using a structure-preserving model , 1986 .

[186]  Stephen P. Boyd,et al.  Minimizing Effective Resistance of a Graph , 2008, SIAM Rev..

[187]  Edward Ott,et al.  Synchronization in large directed networks of coupled phase oscillators. , 2005, Chaos.

[188]  Rodolphe Sepulchre,et al.  Kick synchronization versus diffusive synchronization , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[189]  Chia-Chi Chu,et al.  Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective , 1995, Proc. IEEE.

[190]  Enrique Mallada,et al.  Synchronization of phase-coupled oscillators with arbitrary topology , 2010, Proceedings of the 2010 American Control Conference.

[191]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[192]  Lubos Buzna,et al.  Synchronization in symmetric bipolar population networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[193]  Javad Lavaei,et al.  Geometry of power flows in tree networks , 2012, 2012 IEEE Power and Energy Society General Meeting.

[194]  Florian Dörfler,et al.  Droop-Controlled Inverters are Kuramoto Oscillators , 2012, ArXiv.

[195]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[196]  R. C. Compton,et al.  Quasi-optical power combining using mutually synchronized oscillator arrays , 1991 .

[197]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[198]  J. L. Hemmen,et al.  Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators , 1993 .

[199]  Hoppensteadt,et al.  Synchronization of laser oscillators, associative memory, and optical neurocomputing , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[200]  H. Chiang Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications , 2010 .

[201]  E. Izhikevich Weakly Coupled Oscillators , 2006 .

[202]  Francesco Bullo,et al.  Synchronization of Power Networks: Network Reduction and Effective Resistance , 2010 .

[203]  Seung-Yeal Ha,et al.  Exponential synchronization of finite-dimensional Kuramoto model at critical coupling strength , 2013 .

[204]  Florian Dörfler,et al.  Attack Detection and Identification in Cyber-Physical Systems -- Part II: Centralized and Distributed Monitor Design , 2012, ArXiv.

[205]  Vito Latora,et al.  Compromise and synchronization in opinion dynamics , 2006 .

[206]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[207]  P. Kundur,et al.  Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions , 2004, IEEE Transactions on Power Systems.

[208]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[209]  F. Paganini,et al.  Global considerations on the Kuramoto model of sinusoidally coupled oscillators , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[210]  Peter W. Sauer,et al.  A necessary condition for power flow Jacobian singularity based on branch complex flows , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[211]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[212]  Vito Latora,et al.  Opinion dynamics and synchronization in a network of scientific collaborations , 2006, physics/0607210.

[213]  Yongqiang Wang,et al.  Optimal Phase Response Functions for Fast Pulse-Coupled Synchronization in Wireless Sensor Networks , 2012, IEEE Transactions on Signal Processing.

[214]  J. Buck Synchronous Rhythmic Flashing of Fireflies , 1938, The Quarterly Review of Biology.

[215]  Frank C. Hoppensteadt,et al.  Synchronization of MEMS resonators and mechanical neurocomputing , 2001 .

[216]  Neil J. Balmforth,et al.  A shocking display of synchrony , 2000 .

[217]  Vittorio Rosato,et al.  Stability of a Distributed Generation Network Using the Kuramoto Models , 2008, CRITIS.

[218]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[219]  Hsiao-Dong Chiang,et al.  Boundary properties of the BCU method for power system transient stability assessment , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[220]  Oliver Mason,et al.  A Convergence Result for the Kuramoto Model with All-to-All Coupling , 2011, SIAM J. Appl. Dyn. Syst..

[221]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[222]  G Jongen,et al.  Coupled dynamics of fast spins and slow exchange interactions in the XY spin glass , 2001 .

[223]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[224]  R. Olfati-Saber,et al.  Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[225]  Anna Scaglione,et al.  A scalable synchronization protocol for large scale sensor networks and its applications , 2005, IEEE Journal on Selected Areas in Communications.

[226]  M. Imboden,et al.  Synchronized Oscillation in Coupled Nanomechanical Oscillators , 2007, Science.

[227]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[228]  D. L. Stein Spin Glasses: Still Complex after All These Years? , 2003 .

[229]  E. Ott,et al.  Exact results for the Kuramoto model with a bimodal frequency distribution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[230]  S. Strogatz,et al.  The size of the sync basin. , 2006, Chaos.

[231]  J. Baillieul,et al.  Geometric critical point analysis of lossless power system models , 1982 .

[232]  L. Chua,et al.  On the dynamics of Josephson-junction circuits , 1979 .

[233]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[234]  Daniel J. Klein Coordinated control and estimation for multi-agent systems: Theory and practice , 2008 .

[235]  Newton G. Bretas,et al.  Required damping to assure multiswing transient stability: the SMIB case , 2000 .

[236]  A. Lichtenberg,et al.  A First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems , 1996 .

[237]  R. Spigler,et al.  Synchronization in populations of globally coupled oscillators with inertial effects , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[238]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[239]  I. Dobson Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems , 1992 .

[240]  Florian Dörfler,et al.  Further results on distributed secondary control in microgrids , 2013, 52nd IEEE Conference on Decision and Control.

[241]  Joe H. Chow,et al.  Singular perturbation analysis of systems with sustained high frequency oscillations , 1978, Autom..

[242]  J. Crawford,et al.  Amplitude expansions for instabilities in populations of globally-coupled oscillators , 1993, patt-sol/9310005.

[243]  S. Kumagai,et al.  Steady-State Security Regions of Power Systems , 1982 .

[244]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[245]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[246]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[247]  S. Sastry,et al.  Analysis of power-flow equation , 1981 .

[248]  T. J. Walker,et al.  Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket , 1969, Science.

[249]  Dirk Aeyels,et al.  Partial entrainment in the finite Kuramoto-Sakaguchi model , 2007 .

[250]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[251]  Peter Wieland,et al.  From Static to Dynamic Couplings in Consensus and Synchronization among Identical and Non-Identical Systems , 2010 .

[252]  Hyunsuk Hong,et al.  Inertia effects on periodic synchronization in a system of coupled oscillators , 1999 .

[253]  Edward Wilson Kimbark,et al.  Power System Stability , 1948 .

[254]  S. Grijalva,et al.  Individual Branch and Path Necessary Conditions for Saddle-Node Bifurcation Voltage Collapse , 2012, IEEE Transactions on Power Systems.

[255]  Florian Dörfler,et al.  Novel results on slow coherency in consensus and power networks , 2013, 2013 European Control Conference (ECC).

[256]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[257]  Raghuraman Mudumbai,et al.  Consensus Based Carrier Synchronization in a Two Node Network , 2011 .

[258]  Eduardo Alberto Canale,et al.  On the Complexity of the Classification of Synchronizing Graphs , 2010, FGIT-GDC/CA.

[259]  Peter W. Sauer,et al.  Existence of solutions for the network/load equations in power systems , 1999 .

[260]  Alain Sarlette,et al.  Geometry and Symmetries in Coordination Control , 2009 .

[261]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[262]  S. Strogatz,et al.  The spectrum of the locked state for the Kuramoto model of coupled oscillators , 2005 .

[263]  Juan G. Restrepo,et al.  Effects of degree-frequency correlations on network synchronization: Universality and full phase-locking , 2012, 1208.4540.

[264]  Jan Lunze,et al.  Synchronization of Heterogeneous Agents , 2012, IEEE Transactions on Automatic Control.

[265]  H Hong,et al.  Spontaneous phase oscillation induced by inertia and time delay. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[266]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[267]  Roberto Baldoni,et al.  Coupling-Based Internal Clock Synchronization for Large-Scale Dynamic Distributed Systems , 2010, IEEE Transactions on Parallel and Distributed Systems.

[268]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[269]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[270]  Naomi Ehrich Leonard,et al.  Decision versus compromise for animal groups in motion , 2011, Proceedings of the National Academy of Sciences.

[271]  Sean P. Meyn,et al.  Synchronization of Coupled Oscillators is a Game , 2010, IEEE Transactions on Automatic Control.

[272]  Christiaan Huygens,et al.  Oeuvres complètes de Christiaan Huygens , 1969 .

[273]  Salah-Eldin A. Mohammed,et al.  Hartman-Grobman theorems along hyperbolic stationary trajectories , 2006 .

[274]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[275]  C.W. Taylor,et al.  The anatomy of a power grid blackout - Root causes and dynamics of recent major blackouts , 2006, IEEE Power and Energy Magazine.

[276]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[277]  G. Ermentrout,et al.  Coupled oscillators and the design of central pattern generators , 1988 .

[278]  Mohamed A. A. Wahab,et al.  Simple and efficient method for steady-state voltage stability assessment of radial distribution systems , 2010 .

[279]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[280]  Y. Bar-Ness,et al.  Distributed synchronization in wireless networks , 2008, IEEE Signal Processing Magazine.

[281]  F. Paganini,et al.  Generic Properties, One-Parameter Deformations, and the BCU Method , 1999 .

[282]  D. Cumin,et al.  Generalising the Kuramoto Model for the study of Neuronal Synchronisation in the Brain , 2007 .

[283]  Dhagash Mehta,et al.  Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian , 2010, 1010.5335.

[284]  G. Bard Ermentrout,et al.  Synchronization in a pool of mutually coupled oscillators with random frequencies , 1985 .

[285]  X. Goudou,et al.  The gradient and heavy ball with friction dynamical systems: the quasiconvex case , 2008, Math. Program..

[286]  M. Pai Energy function analysis for power system stability , 1989 .

[287]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[288]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[289]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[290]  Thierry Van Cutsem,et al.  Voltage Stability of Electric Power Systems , 1998 .

[291]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[292]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[293]  Pravin Varaiya,et al.  Hierarchical stability and alert state steering control of interconnected power systems , 1980 .

[294]  Pravin Varaiya,et al.  A structure preserving energy function for power system transient stability analysis , 1985 .

[295]  B Chance,et al.  Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. , 1971, Archives of biochemistry and biophysics.

[296]  J. Jalife,et al.  Mechanisms of Sinoatrial Pacemaker Synchronization: A New Hypothesis , 1987, Circulation research.

[297]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.