Constraining quantum fields using modular theory

A bstractTomita-Takesaki modular theory provides a set of algebraic tools in quantum field theory that is suitable for the study of the information-theoretic properties of states. For every open set in spacetime and choice of two states, the modular theory defines a positive operator known as the relative modular operator that decreases monotonically under restriction to subregions. We study the consequences of this operator monotonicity inequality for correlation functions in quantum field theory. We do so by constructing a one-parameter Rényi family of information-theoretic measures from the relative modular operator that inherit monotonicity by construction and reduce to correlation functions in special cases. In the case of finite quantum systems, this Rényi family is the sandwiched Rényi divergence and we obtain a simple proof of its monotonicity. Its monotonicity implies a class of constraints on correlation functions in quantum field theory, only a small set of which were known to us. We explore these inequalities for free fields and conformal field theory. We conjecture that the second null derivative of Rényi divergence is non-negative which is a generalization of the quantum null energy condition to the Rényi family.

[1]  Onkar Parrikar,et al.  Modular Hamiltonians for deformed half-spaces and the averaged null energy condition , 2016, 1605.08072.

[2]  P. Calabrese,et al.  Entanglement entropies of the quarter filled Hubbard model , 2014, 1406.7477.

[3]  H. Casini,et al.  On the RG running of the entanglement entropy of a circle , 2012, 1202.5650.

[4]  Nima Lashkari Entanglement at a scale and renormalization monotones , 2017, Journal of High Energy Physics.

[5]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[6]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[7]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[8]  Erwin Schrödinger International,et al.  On revolutionizing quantum field theory with Tomita’s modular theory , 2000 .

[9]  H. Casini,et al.  Markov Property of the Conformal Field Theory Vacuum and the a Theorem. , 2017, Physical review letters.

[10]  T. Faulkner,et al.  A general proof of the quantum null energy condition , 2017, Journal of High Energy Physics.

[11]  Michael A. Nielsen,et al.  A simple proof of the strong subadditivity inequality , 2005, Quantum Inf. Comput..

[12]  V. Jones Von Neumann Algebras , 2020, Lectures on von Neumann Algebras.

[13]  A finite entanglement entropy and the c-theorem , 2004, hep-th/0405111.

[14]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[15]  H. Casini,et al.  Modular Hamiltonians on the null plane and the Markov property of the vacuum state , 2017, 1703.10656.

[16]  H. Araki,et al.  Positive Cones and L p -Spaces for von Neumann Algebras , 1982 .

[17]  D. Petz Quasi-entropies for States of a von Neumann Algebra , 1985 .

[18]  J. Oppenheim,et al.  Holographic second laws of black hole thermodynamics , 2018, Journal of High Energy Physics.

[19]  Mark M. Wilde,et al.  Optimized quantum f-divergences and data processing , 2017, Journal of Physics A: Mathematical and Theoretical.

[20]  Nima Lashkari,et al.  Modular flow of excited states , 2018, Journal of High Energy Physics.

[21]  R. Haag,et al.  Local quantum physics , 1992 .

[22]  M. Raamsdonk,et al.  Gravitational positive energy theorems from information inequalities , 2016, 1605.01075.

[23]  Mario Berta,et al.  Rényi Divergences as Weighted Non-commutative Vector-Valued $$L_p$$Lp-Spaces , 2016, ArXiv.

[24]  Robert Schrader,et al.  Axioms for Euclidean Green's functions II , 1973 .

[25]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[26]  R. Bousso,et al.  Prepared for submission to JHEP A Quantum Focussing Conjecture , 2015 .

[27]  Y. Ogata,et al.  Entropic Fluctuations in Quantum Statistical Mechanics. An Introduction , 2011, 1106.3786.

[28]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[29]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[30]  T. Rodriguez,et al.  I Would Also like to Thank , 2007 .

[31]  A. Jenčová Annales Henri Poincaré Rényi Relative Entropies and Noncommutative Lp-Spaces , 2022 .

[32]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[33]  E. Witten APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory , 2018, Reviews of Modern Physics.

[34]  Aron C. Wall A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices , 2011, 1105.3445.

[35]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[36]  Nima Lashkari Relative entropies in conformal field theory. , 2014, Physical review letters.

[37]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[38]  Thomas Hartman,et al.  Averaged null energy condition from causality , 2016, Journal of High Energy Physics.

[39]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[40]  H. Araki Relative Entropy of States of von Neumann Algebras , 1975 .

[41]  R. Haag,et al.  When does a Quantum Field Theory describe particles? , 1965 .

[42]  R. Medina,et al.  Renyi relative entropies and renormalization group flows , 2018, Journal of High Energy Physics.

[43]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .