Robust feedback model predictive control of norm-bounded uncertain systems

This thesis is concerned with the Robust Model Predictive Control (RMPC) of linear discrete-time systems subject to norm-bounded model-uncertainty, additive disturbances and hard constraints on the input and state. The aim is to design tractable, feedback RMPC algorithms that are based on linear matrix inequality (LMI) optimizations. The notion of feedback is very important in the RMPC control parameterization since it enables effective disturbance/uncertainty rejection and robust constraint satisfaction. However, treating the state-feedback gain as an optimization variable leads to non-convexity and nonlinearity in the RMPC scheme for norm-bounded uncertain systems. To address this problem, we propose three distinct state-feedback RMPC algorithms which are all based on (convex) LMI optimizations. In the first scheme, the aforementioned non-convexity is avoided by adopting a sequential approach based on the principles of Dynamic Programming. In particular, the feedback RMPC controller minimizes an upper-bound on the cost-to-go at each prediction step and incorporates the state/input constraints in a non-conservative manner. In the second RMPC algorithm, new results, based on slack variables, are proposed which help to obtain convexity at the expense of only minor conservatism. In the third and final approach, convexity is achieved by re-parameterizing, online, the norm-bounded uncertainty as a polytopic (additive) disturbance. All three RMPC schemes drive the uncertain-system state to a terminal invariant set which helps to establish Lyapunov stability and recursive feasibility. Low-complexity robust control invariant (LC-RCI) sets, when used as target sets, yield computational advantages for the associated RMPC schemes. A convex algorithm for the simultaneous computation of LC-RCI sets and the corresponding controller for norm-bounded uncertain systems is also presented. In this regard, two novel results to separate bilinear terms without conservatism are proposed. The results being general in nature also have application in other control areas. The computed LC-RCI sets are shown to have substantially improved volume as compared to other schemes in the literature. Finally, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The proposed formulation uses a moving window of the past input/output data to generate (tight) bounds on the current state. These bounds are then used to compute an output-feedback RMPC control law using LMI optimizations. An outputfeedback LC-RCI set is also designed, and serves as the terminal set in the algorithm.

[1]  Mayuresh V. Kothare,et al.  Robust output feedback model predictive control using off-line linear matrix inequalities , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[2]  Bart De Moor,et al.  On efficient computation of low-complexity controlled invariant sets for uncertain linear systems , 2010, Int. J. Control.

[3]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[4]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[5]  Francisco Rodríguez,et al.  Online robust tube-based MPC for time-varying systems: a practical approach , 2011, Int. J. Control.

[6]  Elena De Santis,et al.  Controlled invariance and feedback laws , 2001, IEEE Trans. Autom. Control..

[7]  D. Mayne,et al.  Characterization of the solution to a constrained H ∞ optimal control problem , 2005 .

[8]  Eric C. Kerrigan,et al.  On robust optimization and the optimal control of constrained linear systems with bounded state disturbances , 2003, 2003 European Control Conference (ECC).

[9]  Stephen P. Boyd,et al.  Semidefinite Programming Relaxations of Non-Convex Problems in Control and Combinatorial Optimization , 1997 .

[10]  Moritz Diehl,et al.  Robust dynamic programming for min-max model predictive control of constrained uncertain systems , 2004, IEEE Transactions on Automatic Control.

[11]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[12]  Alberto Bemporad,et al.  Reducing conservativeness in predictive control of constrained systems with disturbances , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[13]  Giorgio Battistelli,et al.  Receding-horizon estimation for discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[14]  Francisco Rodríguez,et al.  Robust tube-based predictive control for mobile robots in off-road conditions , 2011, Robotics Auton. Syst..

[15]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[16]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[17]  L. Chisci,et al.  Feasibility in predictive control of constrained linear systems: the output feedback case , 2002 .

[18]  Stephen P. Boyd,et al.  Design of Affine Controllers via Convex Optimization , 2010, IEEE Transactions on Automatic Control.

[19]  Furqart Tahir Efficient computation of Robust Positively Invariant sets with linear state-feedback gain as a variable of optimization , 2010, 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control.

[20]  G. Franzé,et al.  Output feedback model predictive control of uncertain norm‐bounded linear systems , 2011 .

[21]  Imad M. Jaimoukha,et al.  Causal state-feedback parameterizations in robust model predictive control , 2013, Autom..

[22]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[23]  Andrew R. Teel,et al.  Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control , 2005, Autom..

[24]  Eric C. Kerrigan,et al.  Input-to-state stability of robust receding horizon control with an expected value cost , 2008, Autom..

[25]  E. Feron Nonconvex Quadratic Programming, Semidefinite Relaxations and Randomization Algorithms in Information and Decision Systems , 2000 .

[26]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[27]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[28]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[29]  B. Kouvaritakis,et al.  Receding horizon output feedback control for linear systems with input saturation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[30]  Imad M. Jaimoukha,et al.  Robust Model Predictive Control through Dynamic State-feedback: An LMI Approach , 2011 .

[31]  J. Hennet,et al.  (A, B)-Invariant Polyhedral Sets of Linear Discrete-Time Systems , 1999 .

[32]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[33]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[34]  A. Richards,et al.  Robust model predictive control with imperfect information , 2005, Proceedings of the 2005, American Control Conference, 2005..

[35]  David Q. Mayne,et al.  Robust time-optimal control of constrained linear Systems , 1997, Autom..

[36]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[37]  O. Bosgra,et al.  A conic reformulation of Model Predictive Control including bounded and stochastic disturbances under state and input constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[38]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[39]  Herbert Werner,et al.  Output-feedback controlled-invariant sets for systems with linear parameter-varying state transition matrix , 2011, IEEE Conference on Decision and Control and European Control Conference.

[40]  Luigi Chisci,et al.  Dual-Receding Horizon Control of Constrained Discrete Time Systems , 1996, Eur. J. Control.

[41]  B. Kouvaritakis,et al.  Constrained receding horizon predictive control for systems with disturbances , 1999 .

[42]  Eduardo F. Camacho,et al.  Constrained Model Predictive Control , 2007 .

[43]  Wook Hyun Kwon,et al.  Stabilizing receding horizon H ∞ control for linear discrete time-varying systems , 2002 .

[44]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[45]  I.M. Jaimoukha,et al.  Model Predictive Control based on Mixed H2/H Control Approach , 2007, 2007 American Control Conference.

[46]  Imad M. Jaimoukha,et al.  Robust Positively Invariant Sets for Linear Systems subject to model-uncertainty and disturbances , 2012 .

[47]  B. Kouvaritakis,et al.  Nonlinear model predictive control with polytopic invariant sets , 2002 .

[48]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[49]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[50]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[51]  Tamás Terlaky,et al.  A Short Survey on Semidefinite Programming , 1997 .

[52]  Jean-Claude Hennet,et al.  A class of invariant regulators for the discrete-time linear constrained regulation problem , 1991, Autom..

[53]  Basil Kouvaritakis,et al.  Nonlinear model predictive control with polytopic invariant sets , 2003, Autom..

[54]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[55]  David Clarke,et al.  Properties of Generalized Predictive Control , 1987 .

[56]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[57]  Eduardo F. Camacho,et al.  On the piecewise linear nature of min-max model predictive control with bounded uncertainties , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[58]  B. De Moor,et al.  Interpolation based MPC for LPV systems using polyhedral invariant sets , 2005, Proceedings of the 2005, American Control Conference, 2005..

[59]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[60]  S. Khosravi,et al.  Constrained model predictive control of hypnosis , 2015 .

[61]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[62]  Carlos Ariño,et al.  Maximal closed loop admissible set for linear systems with non-convex polyhedral constraints , 2011 .

[63]  Graham C. Goodwin,et al.  Robust output-feedback model predictive control for systems with unstructured uncertainty , 2008, Autom..

[64]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[65]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[66]  P. Boucher,et al.  Invariant set constructions for feasible reference tracking , 2009, 2009 IEEE International Conference on Control and Automation.

[67]  Carlos Eduardo Trabuco Dórea,et al.  Output-feedback controlled-invariant polyhedra for constrained linear systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[68]  Pierre Apkarian,et al.  Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations , 2001, IEEE Trans. Autom. Control..

[69]  David Q. Mayne,et al.  Optimized robust control invariance for linear discrete-time systems: Theoretical foundations , 2007, Autom..

[70]  E. Kerrigan,et al.  RELATIONSHIPS BETWEEN AFFINE FEEDBACK POLICIES FOR ROBUST CONTROL WITH CONSTRAINTS , 2007 .

[71]  Björn E. Ottersten,et al.  Semidefinite Relaxations of Robust Binary Least Squares Under Ellipsoidal Uncertainty Sets , 2011, IEEE Transactions on Signal Processing.

[72]  J. Rawlings,et al.  A new robust model predictive control method I: theory and computation , 2004 .

[73]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[74]  M. Hovd,et al.  Robust output feedback model predictive control for linear systems via moving horizon estimation , 2008, 2008 American Control Conference.

[75]  Zvi Artstein,et al.  Set invariance under output feedback: a set-dynamics approach , 2011, Int. J. Syst. Sci..

[76]  A. Garulli,et al.  Output-feedback predictive control of constrained linear systems via set-membership state estimation , 2000 .

[77]  J. Maciejowski,et al.  Feedback min‐max model predictive control using a single linear program: robust stability and the explicit solution , 2004 .

[78]  David Q. Mayne,et al.  Robustifying model predictive control of constrained linear systems , 2001 .

[79]  Andrew Packard,et al.  Robust H2 and H∞ filters for uncertain LFT systems , 2005, IEEE Trans. Autom. Control..

[80]  Arthur G. Richards,et al.  Robust stable model predictive control with constraint tightening , 2006, 2006 American Control Conference.

[81]  Imad M. Jaimoukha,et al.  Robust feedback model predictive control of constrained uncertain systems , 2013 .

[82]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[83]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[84]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[85]  Eric C. Kerrigan,et al.  Output feedback receding horizon control of constrained systems , 2007, Int. J. Control.

[86]  A. Richards,et al.  Robust Receding Horizon Control using Generalized Constraint Tightening , 2007, 2007 American Control Conference.

[87]  Ricardo C. L. F. Oliveira,et al.  A convex optimization procedure to compute ℋ︁2 and ℋ︁∞ norms for uncertain linear systems in polytopic domains , 2008 .

[88]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[89]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[90]  Imad M. Jaimoukha,et al.  Low-Complexity Polytopic Invariant Sets for Linear Systems Subject to Norm-Bounded Uncertainty , 2015, IEEE Transactions on Automatic Control.

[91]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[92]  Eduardo F. Camacho,et al.  Model Predictive Controllers , 2007 .

[93]  Youxian Sun,et al.  BILINEAR CONTROL STRATEGY FOR PAPER-MAKING PROCESS , 1992 .

[94]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[95]  D. Garling,et al.  Inequalities: A Journey into Linear Analysis , 2007 .

[96]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[97]  E. Mosca Optimal, Predictive and Adaptive Control , 1994 .

[98]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[99]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[100]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[101]  Efstratios N. Pistikopoulos,et al.  Algorithm for robust explicit/multi-parametric MPC in embedded control systems , 2011 .

[102]  Nikolaos Athanasopoulos,et al.  Invariant set computation for constrained uncertain discrete-time linear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[103]  F. Schweppe,et al.  Control of linear dynamic systems with set constrained disturbances , 1971 .

[104]  Alessandro Casavola,et al.  Robust constrained predictive control of uncertain norm-bounded linear systems , 2004, Autom..

[105]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[106]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[107]  U. Jönsson A Lecture on the S-Procedure , 2006 .

[108]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[109]  M. Hoagland,et al.  Feedback Systems An Introduction for Scientists and Engineers SECOND EDITION , 2015 .

[110]  Manfred Morari,et al.  A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback , 2008, 2008 47th IEEE Conference on Decision and Control.

[111]  J. Hennet,et al.  Feedback control of linear discrete-time systems under state and control constraints , 1988 .

[112]  Efstratios N. Pistikopoulos,et al.  Dynamic optimization and robust explicit model predictive control of hydrogen storage tank , 2010, Comput. Chem. Eng..