Sampled medial loci for 3D shape representation

The medial axis transform is valuable for shape representation as it is complete and captures part structure. However, its exact computation for arbitrary 3D models is not feasible. We introduce a novel algorithm to approximate the medial axis of a polyhedron with a dense set of medial points, with a guarantee that each medial point is within a specified tolerance from the medial axis. Given this discrete approximation to the medial axis, we use Damon's work on radial geometry (Damon, 2005 [1]) to design a numerical method that recovers surface curvature of the object boundary from the medial axis transform alone. We also show that the number of medial sheets comprising this representation may be significantly reduced without substantially compromising the quality of the reconstruction, to create a more useful part-based representation.

[1]  Ari Rappoport,et al.  Computing Voronoi skeletons of a 3-D polyhedron by space subdivision , 2002, Comput. Geom..

[2]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[3]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[4]  Paul A. Yushkevich,et al.  Continuous Medial Representation for Anatomical Structures , 2006, IEEE Transactions on Medical Imaging.

[5]  James N. Damon,et al.  Tree Structure for Contractible Regions in ℝ3 , 2007, International Journal of Computer Vision.

[6]  Benjamin B. Kimia,et al.  The Medial Scaffold of 3D Unorganized Point Clouds , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[8]  Ali Shokoufandeh,et al.  Retrieving articulated 3-D models using medial surfaces , 2008, Machine Vision and Applications.

[9]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[10]  Tamal K. Dey,et al.  Normal and Feature Approximations from Noisy Point Clouds , 2006, FSTTCS.

[11]  Bernd Hamann,et al.  Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration , 2009, Mathematics and Visualization.

[12]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[13]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[14]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[15]  Oliver Brock,et al.  Efficient and robust computation of an approximated medial axis , 2004, SM '04.

[16]  A. Pressley Elementary Differential Geometry , 2000 .

[17]  Ilan Shimshoni,et al.  Estimating the principal curvatures and the Darboux frame from real 3D range data , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[18]  James N. Damon,et al.  Determining the Geometry of Boundaries of Objects from Medial Data , 2005, International Journal of Computer Vision.

[19]  Dinesh Manocha,et al.  Fast Proximity Queries with Swept Sphere Volumes , 1999 .

[20]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[21]  F. Chazal,et al.  The λ-medial axis , 2005 .

[22]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[23]  Wolfgang Heidrich,et al.  Shape simplification based on the medial axis transform , 2003, IEEE Visualization, 2003. VIS 2003..

[25]  B. O'neill Elementary Differential Geometry , 1966 .

[26]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[27]  Kaleem Siddiqi,et al.  Revealing Significant Medial Structure in Polyhedral Meshes , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[28]  H. Blum Biological shape and visual science (part I) , 1973 .

[29]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[30]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[31]  Szymon Rusinkiewicz,et al.  Estimating curvatures and their derivatives on triangle meshes , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[32]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Martin Styner,et al.  Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability , 2003, International Journal of Computer Vision.

[34]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[35]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[36]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Lee R. Nackman,et al.  Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[40]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[41]  Sue Whitesides,et al.  Medial Axis Approximation with Bounded Error , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[42]  Kaleem Siddiqi,et al.  Flux invariants for shape , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..