Zur Informationsverarbeitung im visuellen System der Wirbeltiere. II

In this paper it is tried to find a mathematical model for a number of mainly electrophysiological results concerning pattern recognition of mammals. The interpretations are essentially based on the experiments of Hubel and Wiesel in the visual system of the cat and the monkey. After a short introduction to the applied theory of linear nervous nets the investigations in the retina are interpreted. This part of the visual system can be considered as a bandpass-filter for space dependent oscillations. At the level of the geniculate body, a further filtering takes place which especially attenuates the low and the very high frequencies. The processes in the cortex regions 17, 18 and 19, where the further preprocessing of the pattern recognition takes place, can be interpreted by the theory of matched filters. In Area 17 the input pattern is reduced to the contour lines. In the two other areas the extraction of simple characteristic features such as line ends and corners takes place. By means of the present results it is not possible to draw complete conclusions on the structure of the recognition process.

[1]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.

[2]  R Dubner,et al.  Visual receptive fields and responses to movement in an association area of cat cerebral cortex. , 1969, Journal of neurophysiology.

[3]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[4]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[5]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[6]  G. Baumgartner,et al.  Responses of cortical neurones to stimulation of the visual afferent radiations , 2004, Experimental Brain Research.

[7]  Rainer Röhler,et al.  Informationstheorie in der Optik , 1967 .

[8]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[9]  W. v. Seelen Informationsverarbeitung in homogenen Netzen von Neuronenmodellen , 2004, Kybernetik.

[10]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[11]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[12]  B. Burns,et al.  Contrast discrimination by neurones in the cat's visual cerebral cortex , 1964, The Journal of physiology.

[13]  D. Middleton An Introduction to Statistical Communication Theory , 1960 .

[14]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[15]  D. Hubel,et al.  Visual area of the lateral suprasylvian gyrus (Clare—Bishop area) of the cat , 1969, The Journal of physiology.

[16]  G. F. Cooper,et al.  The spatial selectivity of the visual cells of the cat , 1969, The Journal of physiology.

[17]  O. Grüsser,et al.  Quantitative Untersuchungen der räumlichen Erregungssummation im rezeptiven Feld retinaler Neurone der Katze , 2004, Kybernetik.

[18]  I A Shevelev Neuronal organization of the initial afferent inflow in the cat LGB. , 1969, Vision research.

[19]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[20]  É. D. L. Tour,et al.  Nouvelles observations concernant l’action du laurylsulfate de sodium sur la paroi et la membrane d’E. coli , 1965 .

[21]  Werner Reichardt,et al.  Die Verarbeitung stationärer optischer Nachrichten im Komplexauge von Limulus , 1964, Kybernetik.

[22]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[23]  H. Uhlemann,et al.  Eigenschaften von Nervenimpulsfolgen , 2004, Kybernetik.