Recent Advances in DC Programming and DCA

Difference of Convex functions DC Programming and DC Algorithm DCA constitute the backbone of Nonconvex Programming and Global Optimization. The paper is devoted to the State of the Art with recent advances of DC Programming and DCA to meet the growing need for nonconvex optimization and global optimization, both in terms of mathematical modeling as in terms of efficient scalable solution methods. After a brief summary of these theoretical and algorithmic tools, we outline the main results on convergence of DCA in DC programming with subanalytic data, exact penalty techniques with/without error bounds in DC programming including mixed integer DC programming, DCA for general DC programs, and DC programming involving the l0-norm via its approximation and penalization.

[1]  M. Shiota Geometry of subanalytic and semialgebraic sets , 1997 .

[2]  Le Thi Hoai An,et al.  DC Programming and DCA for General DC Programs , 2014, ICCSAMA.

[3]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[4]  R. Horst,et al.  DC Programming: Overview , 1999 .

[5]  Xiaoling Sun,et al.  Nonlinear Integer Programming , 2006 .

[6]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[7]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[8]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[9]  Le Thi Hoai An,et al.  A continuous DC programming approach to the strategic supply chain design problem from qualified partner set , 2007, Eur. J. Oper. Res..

[10]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[11]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[12]  Le Thi Hoai An,et al.  An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs , 2010, J. Glob. Optim..

[13]  Le Thi Hoai An,et al.  Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm , 2012, Journal of Optimization Theory and Applications.

[14]  Mikhail V. Solodov,et al.  On the Sequential Quadratically Constrained Quadratic Programming Methods , 2004, Math. Oper. Res..

[15]  Le Thi Hoai An,et al.  An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints , 2000, Math. Program..

[16]  Yi Shuai Niu,et al.  Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériques , 2010 .

[17]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[18]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[19]  Tao Pham Dinh,et al.  Exact penalty in d.c. programming , 1999 .

[20]  R. Ge,et al.  A continuous approach to nonlinear integer programming , 1989 .

[21]  Tao Pham Dinh,et al.  Proximal Decomposition on the Graph of a Maximal Monotone Operator , 1995, SIAM J. Optim..

[22]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[23]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[24]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .

[25]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[26]  Le Thi Hoai An,et al.  Large-Scale Molecular Optimization from Distance Matrices by a D.C. Optimization Approach , 2003, SIAM J. Optim..

[27]  S. Łojasiewicz Sur la géométrie semi- et sous- analytique , 1993 .

[28]  Le Thi Hoai An,et al.  Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997, J. Glob. Optim..

[29]  Le Thi Hoai An,et al.  Exact penalty and error bounds in DC programming , 2012, J. Glob. Optim..

[30]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[31]  Le Thi Hoai An,et al.  A continuous approach for the concave cost supply problem via DC programming and DCA , 2008, Discret. Appl. Math..

[32]  Philippe Vismara,et al.  Finding Maximum Common Connected Subgraphs Using Clique Detection or Constraint Satisfaction Algorithms , 2008, MCO.

[33]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[34]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[35]  S. Łojasiewicz Sur le problème de la division , 1959 .

[36]  J. Spingarn Partial inverse of a monotone operator , 1983 .

[37]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[38]  P. D. Tao,et al.  Partial regularization of the sum of two maximal monotone operators , 1993 .

[39]  Le Thi Hoai An,et al.  A DC Programming Approach for Sparse Eigenvalue Problem , 2010, ICML.

[40]  H. Tuy Convex analysis and global optimization , 1998 .