A Solution to the Accuracy/Robustness Dilemma in Impedance Control

It has been reported that, in impedance control, there exists a dilemma between impedance accuracy and robustness against modeling error. As a solution to this dilemma, an accurate and robust impedance control technique is developed based on internal model control structure and time-delay estimation: the former injects desired impedance and corrects modeling error, the latter estimates and compensates the nonlinear dynamics of robot manipulators. Owing to the simple structure, the proposed control is designed without requiring entire model computation or complex algorithms. In 2-DOF SCARA-type robot experiments, the accuracy and robustness of the proposed control are confirmed through comparisons with other competent controllers including impedance control with disturbance observer.

[1]  Miriam Zacksenhouse,et al.  Accuracy/robustness dilemma in impedance control , 2003 .

[2]  M.R. Matausek,et al.  Nonlinear multi-input-multi-output neural network control of DC motor drive with field weakening , 1998, IEEE Trans. Ind. Electron..

[3]  Maria Chiara Carrozza,et al.  Biomechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetic and Robotic Applications , 2007 .

[4]  O. Toker,et al.  A Multithreaded Distributed Telerobotic Framework , 2006, IEEE/ASME Transactions on Mechatronics.

[5]  Maolin Jin,et al.  Robust Compliant Motion Control of Robot With Nonlinear Friction Using Time-Delay Estimation , 2008, IEEE Transactions on Industrial Electronics.

[6]  Peter Xiaoping Liu,et al.  Force reflection algorithm for improved transparency in bilateral teleoperation with communication delay , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[7]  Yoichi Hori,et al.  Robust speed control of DC servomotors using modern two degrees-of-freedom controller design , 1991 .

[8]  Bruno Siciliano,et al.  A survey of robot interaction control schemes with experimental comparison , 1999 .

[9]  P.X. Liu,et al.  A Force-Reflection Algorithm for Improved Transparency in Bilateral Teleoperation With Communication Delay , 2007, IEEE/ASME Transactions on Mechatronics.

[10]  Pyung Hun Chang,et al.  AN EXPERIMENTAL STUDY ON IMPROVING HYBRID POSITION/FORCE CONTROL OF A ROBOT USING TIME DELAY CONTROL , 1996 .

[11]  Dale A. Lawrence,et al.  Impedance control stability properties in common implementations , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[12]  S. Preitl,et al.  Design and Experiments for a Class of Fuzzy Controlled Servo Systems , 2008, IEEE/ASME Transactions on Mechatronics.

[13]  Toshiyuki Murakami,et al.  A motion control strategy based on equivalent mass matrix in multidegree-of-freedom manipulator , 1995, IEEE Trans. Ind. Electron..

[14]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[15]  S. Dasgupta,et al.  Asymptotically convergent modified recursive least-squares with data-dependent updating and forgetting factor , 1985 .

[16]  Kouhei Ohnishi,et al.  An Analysis of Parameter Variations of Disturbance Observer for Motion Control , 2007, IEEE Transactions on Industrial Electronics.

[17]  H. P. Chen,et al.  Robust implementation of generalized impedance control for robot manipulators , 2001, Adv. Robotics.

[18]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[19]  Tsuneo Yoshikawa,et al.  Force control of robot manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  Kamal Youcef-Toumi,et al.  Input/Output Linearization Using Time Delay Control , 1992 .

[21]  John Kenneth Salisbury,et al.  Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects , 2006, IEEE Transactions on Robotics.

[22]  Pyung Hun Chang,et al.  Time Delay Observer: A Robust Observer for Nonlinear Plants , 1997 .

[23]  Pyung-Hun Chang,et al.  Robust force/position control of a robot manipulator using time-delay control , 1995 .

[24]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[25]  Danwei Wang,et al.  Learning impedance control for robotic manipulators , 1998, IEEE Trans. Robotics Autom..

[26]  Kazuhito Yokoi,et al.  Real-Time Planning of Humanoid Robot's Gait for Force-Controlled Manipulation , 2007 .

[27]  An-Chyau Huang,et al.  Adaptive Impedance Control of Robot Manipulators based on Function Approximation Technique , 2004, Robotica.

[28]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[29]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[30]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[31]  S. P.Chan,et al.  Robust implementation of generalized impedance control for robot manipulators , 2001 .

[32]  Kouhei Ohnishi,et al.  Motion control for advanced mechatronics , 1996 .

[33]  H.I. Krebs,et al.  Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke , 2007, IEEE/ASME Transactions on Mechatronics.

[34]  Aun-Neow Poo,et al.  Internal model structure in the control of robot manipulators , 1996 .

[35]  Jie Bao,et al.  A new approach to control of MIMO processes with static nonlinearities using an extended IMC framework , 2005, Comput. Chem. Eng..

[36]  R. Riener,et al.  Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation , 2008, IEEE/ASME Transactions on Mechatronics.