The PMIP 4 contribution to CMIP 6 – Part 1 : Overview and overarching analysis plan

This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (OttoBliesner et al., 2017) gives details about the two PMIP4CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) – Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.

[1]  P. Braconnot,et al.  Changes in the ENSO/SPCZ relationship from past to future climates , 2015 .

[2]  P. Valdes,et al.  Last glacial maximum constraints on the Earth System model HadGEM2-ES , 2015, Climate Dynamics.

[3]  Fiona Tummon,et al.  The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6 , 2016 .

[4]  A. Timmermann,et al.  On the definition of seasons in paleoclimate simulations with orbital forcing , 2008 .

[5]  Andrew D. Jones,et al.  Lawrence Berkeley National Laboratory Recent Work Title The Land Use Model Intercomparison Project ( LUMIP ) contribution to CMIP 6 : Rationale and experimental design Permalink , 2016 .

[6]  Harry J. Dowsett,et al.  High eustatic sea level during the middle Pliocene:Evidence from the southeastern U.S. Atlantic Coastal Plain , 1990 .

[7]  G. Wilson,et al.  Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Sandy P. Harrison,et al.  Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth , 2014 .

[9]  M. Chandler,et al.  Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  G. Messori,et al.  Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period , 2016 .

[11]  A. Timmermann,et al.  The response of ENSO flavors to mid‐Holocene climate: Implications for proxy interpretation , 2015 .

[12]  W. Collins,et al.  Evaluation of climate models , 2013 .

[13]  M. Huber,et al.  Spontaneous transition to superrotation in warm climates simulated by CAM3 , 2010 .

[14]  B. Hönisch,et al.  Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations , 2011 .

[15]  M. Schulz,et al.  Last interglacial temperature evolution - a model inter-comparison , 2012 .

[16]  J. Kutzbach,et al.  Sensitivity of a coupled atmosphere/mixed layer ocean model to changes in orbital forcing at 9000 years B.P. , 1988 .

[17]  H. Renssen,et al.  Evaluating Southern Ocean sea-ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence , 2012 .

[18]  P. Friedlingstein,et al.  Modeling fire and the terrestrial carbon balance , 2011 .

[19]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[20]  Margo Project Members Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum , 2009 .

[21]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[22]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[23]  Rainer Zahn,et al.  Atlantic Meridional Overturning Circulation During the Last Glacial Maximum , 2007, Science.

[24]  C. Turney,et al.  Does the Agulhas Current amplify global temperatures during super‐interglacials? , 2010 .

[25]  Patrick Heimbach,et al.  OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project , 2016 .

[26]  J. Kutzbach,et al.  Calendar effect on phase study in paleoclimate transient simulation with orbital forcing , 2011 .

[27]  P. deMenocal,et al.  The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr , 2013 .

[28]  G. Ramstein,et al.  Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project , 2012 .

[29]  D. Krantz A chronology of Pliocene sea-level fluctuations: The U.S. Middle Atlantic Coastal Plain record , 1991 .

[30]  N. Mahowald,et al.  The PMIP 4 contribution to CMIP 6 – Part 4 : Scientific objectives and experimental design of the PMIP 4-CMIP 6 Last Glacial Maximum experiments and PMIP 4 sensitivity experiments , 2017 .

[31]  Yan Zhao,et al.  Evaluation of climate models using palaeoclimatic data , 2012 .

[32]  S. McGregor,et al.  The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework , 2015 .

[33]  J. Lamarque,et al.  AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6 , 2016 .

[34]  David Pollard,et al.  A data-constrained large ensemble analysis of Antarctic evolution since the Eemian , 2014 .

[35]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[36]  Steven J. Phipps,et al.  Paleoclimate Data–Model Comparison and the Role of Climate Forcings over the Past 1500 Years* , 2013 .

[37]  A. P. Siebesma,et al.  The Cloud Feedback Model Intercomparison Project (CFMIP) , 2016 .

[38]  M. Ziegler,et al.  CO2 over the past 5 million years : Continuous simulation and new δ11B-based proxy data , 2016 .

[39]  Andrew A. Kulpecz,et al.  High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation , 2012 .

[40]  S. Rahmstorf,et al.  Temperature-driven global sea-level variability in the Common Era , 2016, Proceedings of the National Academy of Sciences.

[41]  D. Karoly,et al.  Nonstationary Australasian Teleconnections and Implications for Paleoclimate Reconstructions , 2013 .

[42]  Andrew A. Kulpecz,et al.  deglaciation High tide of the warm Pliocene : Implications of global sea level for Antarctic , 2012 .

[43]  Gregory J. L. Tourte,et al.  The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0) , 2017 .

[44]  A. Roberts,et al.  Sea-level and deep-sea-temperature variability over the past 5.3 million years , 2014, Nature.

[45]  Reto Knutti,et al.  The Detection and Attribution Model Intercomparison Project (DAMIP v1.0)contribution to CMIP6 , 2016 .

[46]  T. Zhou,et al.  Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes during the Last Millennium: Analysis of MPI-ESM Simulations , 2014 .

[47]  Robert Pincus,et al.  The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental Protocol for CMIP6 , 2016 .

[48]  K. Lambeck,et al.  Sea level and global ice volumes from the Last Glacial Maximum to the Holocene , 2014, Proceedings of the National Academy of Sciences.

[49]  P. Braconnot,et al.  Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP , 2015, Climate Dynamics.

[50]  T. Zhou,et al.  Simulation of the East Asian Summer Monsoon during the Last Millennium with the MPI Earth System Model , 2012 .

[51]  T. L. Rasmussen,et al.  Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial , 2014 .

[52]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[53]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[54]  Caspar M. Ammann,et al.  Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0) , 2011 .

[55]  E. Guilyardi,et al.  ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations , 2008 .

[56]  Pascale Braconnot,et al.  Sensitivity of paleoclimate simulation results to season definitions , 1997 .

[57]  Z. Liu,et al.  Evolution and forcing mechanisms of El Niño over the past 21,000 years , 2014, Nature.

[58]  T. Zhou,et al.  Regional-scale surface air temperature and East Asian summer monsoon changes during the last millennium simulated by the FGOALS-gl climate system model , 2014, Advances in Atmospheric Sciences.

[59]  D. Easterling,et al.  Observations: Atmosphere and surface , 2013 .

[60]  M. Kageyama,et al.  Evaluation of CMIP5 palaeo-simulations to improve climate projections , 2015 .

[61]  J. Fohlmeister,et al.  Strong and deep Atlantic meridional overturning circulation during the last glacial cycle , 2014, Nature.

[62]  J. Annan,et al.  Can we trust climate models? , 2014 .

[63]  P. Valdes,et al.  How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity? , 2015 .

[64]  Marie-Louise Siggaard-Andersen,et al.  High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years , 2008, Science.

[65]  I. Prentice,et al.  Climate model benchmarking with glacial and mid-Holocene climates , 2014, Climate Dynamics.

[66]  J. Fasullo,et al.  Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model , 2016 .

[67]  P. Braconnot,et al.  Characterization of Model Spread in PMIP2 Mid-Holocene Simulations of the African Monsoon , 2013 .

[68]  B. Otto‐Bliesner,et al.  Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions , 2017 .

[69]  Eric Larour,et al.  Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. , 2016, Geoscientific model development.

[70]  A. Wittenberg Are historical records sufficient to constrain ENSO simulations? , 2009 .

[71]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[72]  Michel Crucifix,et al.  Does the Last Glacial Maximum constrain climate sensitivity? , 2006 .

[73]  E. S. Epstein On Obtaining Daily Climatological Values from Monthly Means , 1991 .

[74]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[75]  Maureen E. Raymo,et al.  Mid-Pliocene warmth: stronger greenhouse and stronger conveyor , 1996 .

[76]  Chris Derksen,et al.  LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome. , 2016 .

[77]  W. Lipscomb,et al.  The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations , 2016 .

[78]  A. Moberg A statistical hemispheric-scale climate model versus proxy data comparison , 2013 .

[79]  G. Ramstein,et al.  Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP , 2013 .

[80]  N. Graham,et al.  Continental-scale temperature variability during the past two millennia , 2013 .

[81]  S. Harrison,et al.  Energy-balance mechanisms underlying consistent large-scale temperature responses in warm and cold climates , 2015, Climate Dynamics.

[82]  François Massonnet,et al.  The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations , 2016 .

[83]  P. Valdes,et al.  Transient climate simulations of the deglaciation 21 – 9 thousand years before present ; PMIP 4 Core experiment design and boundary conditions , 2015 .

[84]  B. Otto‐Bliesner,et al.  A multi-model assessment of last interglacial temperatures , 2012 .

[85]  L. Lisiecki,et al.  A Late Pleistocene sea level stack , 2014 .

[86]  T. Laepple,et al.  Global and regional variability in marine surface temperatures , 2014 .

[87]  M. Yoshimori,et al.  Can the Last Glacial Maximum constrain climate sensitivity? , 2012 .

[88]  M. Jansen,et al.  Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations: SEA ICE AND GLACIAL AMOC , 2017 .

[89]  Jung Choi,et al.  Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3 , 2013, Climate Dynamics.

[90]  E. Guilyardi,et al.  Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints , 2006 .

[91]  L. Bopp,et al.  Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach , 2011 .

[92]  Thomas F. Stocker,et al.  Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present , 2015 .

[93]  D. Dilcher,et al.  Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations , 1996 .

[94]  L. Gallardo,et al.  Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates , 2015 .

[95]  G. Marino,et al.  Corrigendum: Sea-level and deep-sea-temperature variability over the past 5.3 million years , 2014, Nature.

[96]  S. Harrison,et al.  Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations , 2013 .

[97]  R. Hatfield,et al.  Evolution of the northeast Labrador Sea during the last interglaciation , 2012 .

[98]  P. Valdes,et al.  A new global biome reconstruction and data‐model comparison for the Middle Pliocene , 2008 .

[99]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[100]  G. Faluvegi,et al.  Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly , 2009, Science.

[101]  Pierre Friedlingstein,et al.  C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6 , 2016 .

[102]  G. Leduc,et al.  Implication of methodological uncertainties for Mid-Holocene sea surface temperature reconstructions , 2014 .

[103]  N. Mahowald,et al.  Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives , 2014 .

[104]  J. Marotzke,et al.  A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP , 2012 .

[105]  P. Valdes,et al.  Last glacial maximum radiative forcing from mineral dust aerosols in an Earth system model , 2015 .

[106]  S. Harrison,et al.  Consistent large‐scale temperature responses in warm and cold climates , 2013 .

[107]  Joseph M. Prospero,et al.  Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum , 2010 .

[108]  D. Pollard,et al.  A calendar conversion method for monthly mean paleoclimate model output with orbital forcing , 2002 .

[109]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[110]  M. Winstrup,et al.  Timing and climate forcing of volcanic eruptions for the past 2,500 years , 2015, Nature.

[111]  T. Quinn,et al.  The record of Pliocene sea-level change at Enewetak Atoll , 1991 .

[112]  Radford M. Neal,et al.  A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling , 2012 .

[113]  M. Yoshimori,et al.  Dependency of Feedbacks on Forcing and Climate State in Physics Parameter Ensembles , 2011 .

[114]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[115]  G. Hegerl,et al.  Small influence of solar variability on climate over the past millennium , 2014 .

[116]  M. Raymo,et al.  PLIOMAX: Pliocene maximum sea level project , 2009 .

[117]  A. Tripati,et al.  Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years , 2009, Science.

[118]  M. Kageyama,et al.  Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[119]  S. Harrison,et al.  Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations , 2014 .

[120]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[121]  Sandy P. Harrison,et al.  Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP) , 1999 .

[122]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[123]  J. Annan,et al.  Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene , 2012 .

[124]  B. Otto‐Bliesner,et al.  Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models , 2012 .

[125]  E. Guilyardi,et al.  Mid-Holocene and last glacial maximum climate simulations with the IPSL model: part II: model-data comparisons , 2013, Climate Dynamics.

[126]  Angelyn W. Moore,et al.  The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories , 2014 .

[127]  B. Otto‐Bliesner,et al.  The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design , 2016 .

[128]  D. Frierson,et al.  Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate , 2015 .