A Genetic Programming Approach for Solving the Linear Ordering Problem

The linear ordering problem (LOP) consists in rearranging the rows and columns of a given square matrix such that the sum of the super-diagonal entries is as large as possible. The LOP has a significant number of important practical applications. In this paper we describe an efficient genetic programming based algorithm, designed to find high quality solutions for LOP. The computational results obtained for two sets of benchmark instances indicate that our proposed heuristic is competitive to previous methods for solving the LOP.

[1]  Rafael Martí,et al.  Variable neighborhood search for the linear ordering problem , 2006, Comput. Oper. Res..

[2]  Camelia-Mihaela Pintea,et al.  A Hybrid Ant-Based Approach to the Economic Triangulation Problem for Input-Output Tables , 2009, HAIS.

[3]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[4]  Thomas Stützle,et al.  The linear ordering problem: Instances, search space analysis and algorithms , 2004, J. Math. Model. Algorithms.

[5]  Rafael Martí,et al.  Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..

[6]  Andrew Lim,et al.  Designing A Hybrid Genetic Algorithm for the Linear Ordering Problem , 2003, GECCO.

[7]  Hollis B. Chenery,et al.  International Comparisons of the Structure of Production , 1958 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[10]  Fred W. Glover,et al.  An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem , 2001, J. Glob. Optim..

[11]  Gerhard Reinelt,et al.  A benchmark library and a comparison of heuristic methods for the linear ordering problem , 2012, Comput. Optim. Appl..

[12]  J. Craggs Applied Mathematical Sciences , 1973 .

[13]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[14]  Gerhard Reinelt,et al.  The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization , 2011 .

[15]  P. Schönemann On artificial intelligence , 1985, Behavioral and Brain Sciences.

[16]  Tzung-Pei Hong,et al.  Simultaneously Applying Multiple Mutation Operators in Genetic Algorithms , 2000, J. Heuristics.

[17]  Camelia-Mihaela Pintea,et al.  Solving the linear ordering problem using ant models , 2009, GECCO '09.

[18]  Gerhard Reinelt,et al.  The Linear Ordering Problem , 2011 .

[19]  Thomas Stützle,et al.  Search Space Analysis of the Linear Ordering Problem , 2003, EvoWorkshops.

[20]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[21]  Stefan Chanas,et al.  A new heuristic algorithm solving the linear ordering problem , 1996, Comput. Optim. Appl..

[22]  Irène Charon,et al.  A survey on the linear ordering problem for weighted or unweighted tournaments , 2007, 4OR.

[23]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[24]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.