Uncertainty Quantification of Ocean Parameterizations: Application to the K‐Profile‐Parameterization for Penetrative Convection

Parameterizations of unresolved turbulent processes often compromise the fidelity of large‐scale ocean models. In this work, we argue for a Bayesian approach to the refinement and evaluation of turbulence parameterizations. Using an ensemble of large eddy simulations of turbulent penetrative convection in the surface boundary layer, we demonstrate the method by estimating the uncertainty of parameters in the convective limit of the popular “K‐Profile Parameterization.” We uncover structural deficiencies and propose an alternative scaling that overcomes them.

[1]  Alan Edelman,et al.  Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs , 2020, J. Open Source Softw..

[2]  J. Hansen,et al.  Antarctic Glacial Melt as a Driver of Recent Southern Ocean Climate Trends , 2020, Geophysical Research Letters.

[3]  Tapio Schneider,et al.  Calibrate, emulate, sample , 2020, J. Comput. Phys..

[4]  W. Large,et al.  Similarity Theory in the Surface Layer of Large-Eddy Simulations of the Wind-, Wave-, and Buoyancy-Forced Southern Ocean , 2019, Journal of Physical Oceanography.

[5]  Bjorn De Sutter,et al.  Rapid software prototyping for heterogeneous and distributed platforms , 2019, Adv. Eng. Softw..

[6]  Daniel Livescu,et al.  Leveraging Bayesian analysis to improve accuracy of approximate models , 2019, J. Comput. Phys..

[7]  Olivier P. Prat,et al.  A Bayesian Approach for Statistical–Physical Bulk Parameterization of Rain Microphysics. Part I: Scheme Description , 2019, Journal of the Atmospheric Sciences.

[8]  Andrew Stuart,et al.  Ensemble Kalman methods with constraints , 2019, Inverse problems.

[9]  W. Large,et al.  Argo Observations of the Deep Mixing Band in the Southern Ocean: A Salinity Modeling Challenge , 2018, Journal of Geophysical Research: Oceans.

[10]  John R. Taylor,et al.  Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model , 2018, Physics of Fluids.

[11]  Tim Besard,et al.  Effective Extensible Programming: Unleashing Julia on GPUs , 2017, IEEE Transactions on Parallel and Distributed Systems.

[12]  B. Fox‐Kemper,et al.  Assessing the Effects of Langmuir Turbulence on the Entrainment Buoyancy Flux in the Ocean Surface Boundary Layer , 2017 .

[13]  Luke P. Van Roekel,et al.  The KPP Boundary Layer Scheme for the Ocean: Revisiting Its Formulation and Benchmarking One‐Dimensional Simulations Relative to LES , 2017, Journal of Advances in Modeling Earth Systems.

[14]  G. Danabasoglu,et al.  The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES , 2017 .

[15]  Cecile Hannay,et al.  Practice and philosophy of climate model tuning across six U.S. modeling centers. , 2017, Geoscientific model development.

[16]  Andrew Stuart,et al.  Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High‐Resolution Simulations , 2017, 1709.00037.

[17]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[18]  R. Verstappen How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? , 2016, Computers & Fluids.

[19]  Parviz Moin,et al.  Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows , 2016 .

[20]  E. Hunke,et al.  Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model , 2016 .

[21]  I. Ginis,et al.  Langmuir Turbulence Parameterization in Tropical Cyclone Conditions , 2016 .

[22]  Omar M. Knio,et al.  Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific , 2015, 1510.07476.

[23]  Parviz Moin,et al.  Minimum-dissipation models for large-eddy simulation , 2015 .

[24]  R. Harcourt,et al.  An Improved Second-Moment Closure Model of Langmuir Turbulence , 2015 .

[25]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[26]  O. Knio,et al.  Drag Parameter Estimation Using Gradients and Hessian from a Polynomial Chaos Model Surrogate , 2014 .

[27]  Derek J. Posselt,et al.  Quantification of Cloud Microphysical Parameterization Uncertainty using Radar Reflectivity , 2012 .

[28]  Ibrahim Hoteit,et al.  A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: a feasibility study , 2012, Journal of Oceanography.

[29]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[30]  E. Patton,et al.  The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation , 2011 .

[31]  L. Tannenbaum Laboratory Studies , 2010, Pediatric Orthopaedics and Sports Injuries.

[32]  Vincent E. Larson,et al.  Elucidating Model Inadequacies in a Cloud Parameterization by Use of an Ensemble-Based Calibration Framework , 2007 .

[33]  C. Wunsch Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications , 2006 .

[34]  James C. McWilliams,et al.  Diurnal Coupling in the Tropical Oceans of CCSM3 , 2006 .

[35]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[36]  J. Marshall,et al.  Thermocline Depth and Exchange Fluxes Across Circumpolar Fronts , 2001 .

[37]  Peter A. Rochford,et al.  An optimal definition for ocean mixed layer depth , 2000 .

[38]  John Marshall,et al.  Open‐ocean convection: Observations, theory, and models , 1999 .

[39]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[40]  W. Large,et al.  Large-eddy simulation of the equatorial ocean boundary layer: Diurnal cycling, eddy viscosity, and horizontal rotation , 1996 .

[41]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[42]  L. Kantha,et al.  An improved mixed layer model for geophysical applications , 1994 .

[43]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[44]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[45]  Bert L. Bradford Fast Fourier transforms for direct solution of poisson's equation , 1991 .

[46]  William Carlisle Thacker,et al.  The role of the Hessian matrix in fitting models to measurements , 1989 .

[47]  R. Sweet,et al.  Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions , 1988 .

[48]  Robert Pinkel,et al.  Diurnal cycling: observations and models of the upper-ocean response to diurnal heating, cooling, and wind mixing. Technical report , 1986 .

[49]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[50]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[51]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[52]  B. H. Stockton,et al.  Laboratory studies of the entrainment zone of a convectively mixed layer , 1980, Journal of Fluid Mechanics.

[53]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[54]  A. P. Siebesma,et al.  Climate goals and computing the future of clouds , 2017 .

[55]  Patrick Jöckel,et al.  Earth System Modeling , 2012 .

[56]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[57]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[58]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[59]  T. Bayes LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S , 1763, Philosophical Transactions of the Royal Society of London.

[60]  D. Carati,et al.  Large-eddy simulation , 2000 .