Banishing the homunculus: Making working memory work

[1]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[2]  Jonathan D. Cohen,et al.  On the Control of Control: The Role of Dopamine in Regulating Prefrontal Function and Working Memory , 2007 .

[3]  Michael J. Frank,et al.  A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. , 2006, Behavioral neuroscience.

[4]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[5]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[6]  Jonathan D. Cohen,et al.  Prefrontal cortex and flexible cognitive control: rules without symbols. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[8]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[9]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[10]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[11]  Michael J. Frank,et al.  Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems , 2004, Neurobiology of Learning and Memory.

[12]  Rafal Bogacz,et al.  Parameterization of connectionist models , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[13]  Jonathan D. Cohen,et al.  The neural basis of error detection: conflict monitoring and the error-related negativity. , 2004, Psychological review.

[14]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[15]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[16]  José Luis Contreras-Vidal,et al.  A Predictive Reinforcement Model of Dopamine Neurons for Learning Approach Behavior , 1999, Journal of Computational Neuroscience.

[17]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[18]  R. O’Reilly,et al.  Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. , 2003, Psychological review.

[19]  Randall C. O'Reilly,et al.  Higher-Level Cognitive Functions and Connectionist Modeling. Developmental and Computational Neuroscience Approaches to Cognition: The Case of Generalization. , 2003 .

[20]  Michael Van Elzakker,et al.  Transitivity, flexibility, conjunctive representations, and the hippocampus. I. An empirical analysis , 2003, Hippocampus.

[21]  Michael J. Frank,et al.  Transitivity, flexibility, conjunctive representations, and the hippocampus. II. A computational analysis , 2003, Hippocampus.

[22]  R. O’Reilly,et al.  Opinion TRENDS in Cognitive Sciences Vol.6 No.12 December 2002 , 2022 .

[23]  One Scientist's Quest for the Origin of Our Species , 2002, Science.

[24]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[25]  David J. Freedman,et al.  Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. , 2002, Journal of neurophysiology.

[26]  F Ivy Carroll,et al.  Concurrent Autoreceptor-Mediated Control of Dopamine Release and Uptake during Neurotransmission: An In Vivo Voltammetric Study , 2002, The Journal of Neuroscience.

[27]  Shoji Tanaka,et al.  Dopamine controls fundamental cognitive operations of multi-target spatial working memory , 2002, Neural Networks.

[28]  Eytan Ruppin,et al.  Actor-critic models of the basal ganglia: new anatomical and computational perspectives , 2002, Neural Networks.

[29]  Jonathan D. Cohen,et al.  Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. , 2002, Cerebral cortex.

[30]  T. Braver,et al.  The Role of Frontopolar Cortex in Subgoal Processing during Working Memory , 2002, NeuroImage.

[31]  De Vries Book review: R.C. O'Reilly and Y. Munakata: Computational explorations in cognitive neuroscience: understanding the mind by stimulating the brain. Cambridge, Mass: The MIT Press. , 2002 .

[32]  Nicolas P. Rougier,et al.  Learning representations in a gated prefrontal cortex model of dynamic task switching , 2002, Cogn. Sci..

[33]  K. Doya,et al.  Parallel Cortico-Basal Ganglia Mechanisms for Acquisition and Execution of Visuomotor SequencesA Computational Approach , 2001, Journal of Cognitive Neuroscience.

[34]  K. C. Anderson,et al.  Single neurons in prefrontal cortex encode abstract rules , 2001, Nature.

[35]  Randall C. O'Reilly,et al.  Generalization in Interactive Networks: The Benefits of Inhibitory Competition and Hebbian Learning , 2001, Neural Computation.

[36]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[37]  R. O’Reilly,et al.  Conjunctive representations in learning and memory: principles of cortical and hippocampal function. , 2001, Psychological review.

[38]  P. Calabresi,et al.  Dopaminergic control of synaptic plasticity in the dorsal striatum , 2001, The European journal of neuroscience.

[39]  M. Arbib,et al.  Modeling functions of striatal dopamine modulation in learning and planning , 2001, Neuroscience.

[40]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[41]  J. Bargas,et al.  D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3–Calcineurin-Signaling Cascade , 2000, The Journal of Neuroscience.

[42]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain , 2000 .

[43]  E. Koechlin,et al.  Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Amos A Computational Model of Information Processing in the Frontal Cortex and Basal Ganglia , 2000, Journal of Cognitive Neuroscience.

[45]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[46]  P. Strick,et al.  Basal Ganglia Output and Cognition: Evidence from Anatomical, Behavioral, and Clinical Studies , 2000, Brain and Cognition.

[47]  B. Bloch,et al.  Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum , 2000, The Journal of comparative neurology.

[48]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[49]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[50]  Jonathan D. Cohen,et al.  Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function , 1999, Biological Psychiatry.

[51]  A. Miyake,et al.  Models of Working Memory: Mechanisms of Active Maintenance and Executive Control , 1999 .

[52]  D. Durstewitz,et al.  A Neurocomputational Theory of the Dopaminergic Modulation of Working Memory Functions , 1999, The Journal of Neuroscience.

[53]  Jonathan D. Cohen,et al.  A Biologically Based Computational Model of Working Memory , 1999 .

[54]  J. Kropotov,et al.  Selection of actions in the basal ganglia-thalamocortical circuits: review and model. , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[55]  N. Burgess Memory for Serial Order : A Network Model of the Phonological Loop and its Timing , 1999 .

[56]  T. Braver,et al.  Mechanisms of Cognitive Control: Active Memory, Inhibition, and the Prefrontal Cortex , 1999 .

[57]  R. O’Reilly Six principles for biologically based computational models of cortical cognition , 1998, Trends in Cognitive Sciences.

[58]  J. Houk,et al.  Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. , 1998, Journal of neurophysiology.

[59]  J. Fellous,et al.  A role for NMDA-receptor channels in working memory , 1998, Nature Neuroscience.

[60]  Kenji Doya,et al.  Near-Saddle-Node Bifurcation Behavior as Dynamics in Working Memory for Goal-Directed Behavior , 1998, Neural Computation.

[61]  T. Sejnowski,et al.  A Computational Model of How the Basal Ganglia Produce Sequences , 1998, Journal of Cognitive Neuroscience.

[62]  M. Farah,et al.  Effects of bromocriptine on human subjects depend on working memory capacity , 1997, Neuroreport.

[63]  P. Greengard,et al.  Bidirectional Regulation of DARPP-32 Phosphorylation by Dopamine , 1997, The Journal of Neuroscience.

[64]  Peter Ford Dominey,et al.  Schizophrenics learn surface but not abstract structure in a serial reaction time task , 1997, Neuroreport.

[65]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[66]  Edward E. Smith,et al.  Temporal dynamics of brain activation during a working memory task , 1997, Nature.

[67]  Edward E. Smith,et al.  A Parametric Study of Prefrontal Cortex Involvement in Human Working Memory , 1996, NeuroImage.

[68]  A. Damasio,et al.  Neurobiology of Decision-Making , 2012, Research and Perspectives in Neurosciences.

[69]  J. B. Levitt,et al.  Patterns of intrinsic and associational circuitry in monkey prefrontal cortex , 1996, The Journal of comparative neurology.

[70]  R. Ivry The representation of temporal information in perception and motor control , 1996, Current Opinion in Neurobiology.

[71]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[72]  R. O’Reilly,et al.  A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[74]  Randall C. O'Reilly,et al.  Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm , 1996, Neural Computation.

[75]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  C. Gerfen,et al.  The frontal cortex-basal ganglia system in primates. , 1996, Critical reviews in neurobiology.

[77]  T. Sejnowski,et al.  How the Basal Ganglia Make Decisions , 1996 .

[78]  J. Wickens,et al.  Effects of local connectivity on striatal function: Simulation and analysis of a model , 1995, Synapse.

[79]  Peter Ford Dominey,et al.  A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences , 1995, Journal of Cognitive Neuroscience.

[80]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[81]  S P Wise,et al.  Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. , 1995, Cerebral cortex.

[82]  A. Dickinson,et al.  Reward-related signals carried by dopamine neurons. , 1995 .

[83]  A. Graybiel,et al.  Adaptive neural networks in the basal ganglia. , 1995 .

[84]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[85]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[86]  Joel L. Davis,et al.  Sensorimotor Selection and the Basal Ganglia: A Neural Network Model , 1994 .

[87]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[88]  J. B. Levitt,et al.  Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46) , 1993, The Journal of comparative neurology.

[89]  J. Wickens A Theory of the Striatum , 1993 .

[90]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[92]  James L. McClelland,et al.  A parallel distributed processing approach to automaticity. , 1992, The American journal of psychology.

[93]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[94]  J. Cohen,et al.  Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. , 1992, Psychological review.

[95]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[96]  James L. McClelland,et al.  On the control of automatic processes: a parallel distributed processing account of the Stroop effect. , 1990, Psychological review.

[97]  John H. Byrne,et al.  Neural Models of Plasticity: Experimental and Theoretical Approaches , 1989 .

[98]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[99]  B. Murdock,et al.  Memory for Serial Order , 1989 .

[100]  E. Rolls Functions of neuronal networks in the hippocampus and neocortex in memory , 1989 .

[101]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[102]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[103]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[104]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[105]  O. Andy The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe , 1981 .

[106]  C. Eriksen,et al.  Effects of noise letters upon the identification of a target letter in a nonsearch task , 1974 .

[107]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[108]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[109]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[110]  H. Niki,et al.  Prefrontal cortical unit activity and delayed alternation performance in monkeys. , 1971, Journal of neurophysiology.

[111]  S. Sternberg High-Speed Scanning in Human Memory , 1966, Science.

[112]  Jonathan D. Cohen,et al.  Prefrontal Cortex and the Flexibility of Cognitive Control : Rules Without Symbols , 2022 .

[113]  Michael J. Frank,et al.  A Mechanistic Account of Striatal Dopamine Function in Cognition : Psychopharmacological Studies with Cabergoline and Haloperidol Supplemental Material , 2022 .