Design Principles of Sodium/Potassium Protection Layer for High‐Power High‐Energy Sodium/Potassium‐Metal Batteries in Carbonate Electrolytes: a Case Study of Na2Te/K2Te

The sodium (potassium)‐metal anodes combine low‐cost, high theoretical capacity, and high energy density, demonstrating promising application in sodium (potassium)‐metal batteries. However, the dendrites’ growth on the surface of Na (K) has impeded their practical application. Herein, density functional theory (DFT) results predict Na2Te/K2Te is beneficial for Na+/K+ transport and can effectively suppress the formation of the dendrites because of low Na+/K+ migration energy barrier and ultrahigh Na+/K+ diffusion coefficient of 3.7 × 10−10 cm2 s−1/1.6 × 10−10 cm2 s−1 (300 K), respectively. Then a Na2Te protection layer is prepared by directly painting the nanosized Te powder onto the sodium‐metal surface. The Na@Na2Te anode can last for 700 h in low‐cost carbonate electrolytes (1 mA cm−2, 1 mAh cm−2), and the corresponding Na3V2 (PO4)3//Na@Na2Te full cell exhibits high energy density of 223 Wh kg−1 at an unprecedented power density of 29687 W kg−1 as well as an ultrahigh capacity retention of 93% after 3000 cycles at 20 C. Besides, the K@K2Te‐based potassium‐metal full battery also demonstrates high power density of 20 577 W kg−1 with energy density of 154 Wh kg−1. This work opens up a new and promising avenue to stabilize sodium (potassium)‐metal anodes with simple and low‐cost interfacial layers.

[1]  Feng Wu,et al.  Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode , 2021 .

[2]  Hsing-Yu Tuan,et al.  A synergetic SnSb-amorphous carbon composites prepared from polyesterification process as an ultrastable potassium-ion battery anode , 2021 .

[3]  Zhiyu Wang,et al.  Hydrogen‐Bonding Crosslinking MXene to Highly Robust and Ultralight Aerogels for Strengthening Lithium Metal Anode , 2021, Small Science.

[4]  Yunhui Huang,et al.  Fluoride‐Rich Solid‐Electrolyte‐Interface Enabling Stable Sodium Metal Batteries in High‐Safe Electrolytes , 2021 .

[5]  Yongbing Tang,et al.  Recent Advances on Sodium‐Ion Batteries and Sodium Dual‐Ion Batteries: State‐of‐the‐Art Na + Host Anode Materials , 2021, Small Science.

[6]  Jingyu Sun,et al.  Synchronous Promotion in Sodiophilicity and Conductivity of Flexible Host via Vertical Graphene Cultivator for Longevous Sodium Metal Batteries , 2021, Advanced Functional Materials.

[7]  Xu Han,et al.  Artificial SEI for Superhigh‐Performance K‐Graphite Anode , 2021, Advanced science.

[8]  Wei Sun,et al.  Sulfur in amorphous silica for advanced room-temperature sodium-sulfur battery. , 2021, Angewandte Chemie.

[9]  Guoxiu Wang,et al.  Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes , 2021 .

[10]  J. Tu,et al.  Interface issues of lithium metal anode for high‐energy batteries: Challenges, strategies, and perspectives , 2021 .

[11]  Tingting Xu,et al.  Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries , 2021 .

[12]  D. Zhao,et al.  Recent Progress of Porous Materials in Lithium‐Metal Batteries , 2021, Small Structures.

[13]  Yong Lu,et al.  Rechargeable K-CO2 Batteries with KSn Anode and Carboxyl-Containing Carbon Nanotube Cathode Catalyst. , 2021, Angewandte Chemie.

[14]  Shichun Yang,et al.  Perspective on High‐Concentration Electrolytes for Lithium Metal Batteries , 2021, Small Structures.

[15]  Edward Matios,et al.  SnO2 Quantum Dots Enabled Site-Directed Sodium Deposition for Stable Sodium Metal Batteries. , 2020, Nano letters.

[16]  Yan Yu,et al.  Red Phosphorous‐Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendrite‐Free Sodium and Potassium Metal Anodes , 2020, Advanced Energy Materials.

[17]  Jianchao Sun,et al.  Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure , 2020, Advanced Energy Materials.

[18]  S. Dou,et al.  Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. , 2020, Nano letters.

[19]  Yixian Wang,et al.  Lithium-activated SnS–graphene alternating nanolayers enable dendrite-free cycling of thin sodium metal anodes in carbonate electrolyte , 2020 .

[20]  Jun Chen,et al.  Bifunctional Effects of Cation Additive on Na-O2 Batteries. , 2020, Angewandte Chemie.

[21]  G. Henkelman,et al.  Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries , 2020, Nature Communications.

[22]  D. Mitlin,et al.  Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes , 2020, Advanced Energy Materials.

[23]  Zhiqiang Niu,et al.  Free‐Standing Nanostructured Architecture as a Promising Platform for High‐Performance Lithium–Sulfur Batteries , 2020, Small Structures.

[24]  Longwei Yin,et al.  Pushing the Energy Output and Cycling Lifespan of Potassium‐Ion Capacitor to High Level through Metal–Organic Framework Derived Porous Carbon Microsheets Anode , 2020, Advanced Functional Materials.

[25]  A. Manthiram,et al.  Recent Advances in Lithium–Carbon Dioxide Batteries , 2020, Small Structures.

[26]  Jiaqi Huang,et al.  Rapid Lithium Diffusion in Order@Disorder Pathways for Fast‐Charging Graphite Anodes , 2020, Small Structures.

[27]  Limin Huang,et al.  Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes , 2020 .

[28]  Xin-bo Zhang,et al.  In Situ Designing a Gradient Li+ Capture and Quasi‐Spontaneous Diffusion Anode Protection Layer toward Long‐Life Li−O2 Batteries , 2020, Advanced materials.

[29]  R. Cao,et al.  An Implantable Artificial Protective Layer Enables Stable Sodium Metal Anodes , 2020 .

[30]  Z. Seh,et al.  An artificial metal-alloy interphase for high-rate and long-life sodium–sulfur batteries , 2020 .

[31]  Yaohui Zhang,et al.  Selenium@Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries , 2020 .

[32]  D. Mitlin,et al.  Emerging Potassium Metal Anodes: Perspectives on Control of the Electrochemical Interfaces. , 2020, Accounts of chemical research.

[33]  Z. Seh,et al.  A Biphasic Interphase Design Enabling High Performance in Room Temperature Sodium-Sulfur Batteries , 2020 .

[34]  Junhua Song,et al.  Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure , 2020 .

[35]  Huanlei Wang,et al.  Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms , 2020 .

[36]  Hua Wang,et al.  Tellurium: A High‐Volumetric‐Capacity Potassium‐Ion Battery Electrode Material , 2020, Advanced materials.

[37]  Chun-hua Chen,et al.  A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery , 2020 .

[38]  Rui Zhang,et al.  A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition. , 2020, Angewandte Chemie.

[39]  Yan Yu,et al.  A High-Temperature Na-Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering. , 2020, Small.

[40]  S. Dou,et al.  Dendrite-free sodium metal anodes enabled by sodium benzenedithiolate-rich protection layer. , 2020, Angewandte Chemie.

[41]  Bing Sun,et al.  K2 Ti2 O5 @C Microspheres with Enhanced K+ Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Long-Term Cycling Stability. , 2019, Small.

[42]  Jagjit Nanda,et al.  Dendrite‐Free Potassium Metal Anodes in a Carbonate Electrolyte , 2019, Advanced materials.

[43]  J. Ge,et al.  Nature of FeSe2/N‐C Anode for High Performance Potassium Ion Hybrid Capacitor , 2019, Advanced Energy Materials.

[44]  Fan Zhang,et al.  A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life. , 2019, ACS applied materials & interfaces.

[45]  Bing Sun,et al.  MXene‐Based Dendrite‐Free Potassium Metal Batteries , 2019, Advanced materials.

[46]  R. Cao,et al.  Stable cycling of Na metal anodes in a carbonate electrolyte. , 2019, Chemical communications.

[47]  Chun‐Sing Lee,et al.  Electrochemically Stable Sodium Metal‐Tellurium/Carbon Nanorods Batteries , 2019, Advanced Energy Materials.

[48]  Yong Lu,et al.  In situ Synthesis of a Bismuth Layer on a Sodium Metal Anode for Fast Interfacial Transport in Sodium‐Oxygen Batteries , 2019, Batteries & Supercaps.

[49]  K. Kang,et al.  Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries , 2019, Nature Communications.

[50]  Yiying Wu,et al.  Anchoring an Artificial Protective Layer To Stabilize Potassium Metal Anode in Rechargeable K-O2 Batteries. , 2019, ACS applied materials & interfaces.

[51]  Bing Sun,et al.  Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase , 2019, Nano Energy.

[52]  Jun Chen,et al.  A high-energy-density sodium-ion full battery based on tin anode , 2019, Science China Chemistry.

[53]  Mingming Song,et al.  A High‐Power Na3V2(PO4)3‐Bi Sodium‐Ion Full Battery in a Wide Temperature Range , 2019, Advanced Energy Materials.

[54]  Yunhui Huang,et al.  Toward a Stable Sodium Metal Anode in Carbonate Electrolyte: A Compact, Inorganic Alloy Interface. , 2019, The journal of physical chemistry letters.

[55]  Bingan Lu,et al.  An Ultrafast and Highly Stable Potassium–Organic Battery , 2018, Advanced materials.

[56]  Rui Zhang,et al.  An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode , 2018, Advanced materials.

[57]  Zaiping Guo,et al.  Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries , 2018, Joule.

[58]  Hailiang Wang,et al.  High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. , 2018, Angewandte Chemie.

[59]  Biao Zhang,et al.  Bismuth Microparticles as Advanced Anodes for Potassium‐Ion Battery , 2018 .

[60]  Huan Wang,et al.  Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate. , 2018, Angewandte Chemie.

[61]  Yiying Wu,et al.  Simultaneous Stabilization of Potassium Metal and Superoxide in K-O2 Batteries on the Basis of Electrolyte Reactivity. , 2018, Angewandte Chemie.

[62]  Jiawei Wang,et al.  An Ultralong Lifespan and Low‐Temperature Workable Sodium‐Ion Full Battery for Stationary Energy Storage , 2018 .

[63]  Jun Chen,et al.  A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. , 2018, Angewandte Chemie.

[64]  S. Choudhury,et al.  Designing solid-liquid interphases for sodium batteries , 2017, Nature Communications.

[65]  Qian Sun,et al.  Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. , 2017, Nano letters.

[66]  Hongkyung Lee,et al.  Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer. , 2017, ACS applied materials & interfaces.

[67]  Hongsen Li,et al.  An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials , 2016 .

[68]  Jian Yang,et al.  Double‐Walled Sb@TiO2−x Nanotubes as a Superior High‐Rate and Ultralong‐Lifespan Anode Material for Na‐Ion and Li‐Ion Batteries , 2016, Advanced materials.

[69]  Docheon Ahn,et al.  Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries , 2015 .

[70]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[71]  J. Greeley,et al.  Effect of Concentration on the Energetics and Dynamics of Li Ion Transport in Anatase and Amorphous TiO2 , 2011 .

[72]  Sagar D. Jadhav,et al.  Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor , 2021 .

[73]  Yunhui Huang,et al.  Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries , 2020, Energy & Environmental Science.

[74]  Yan Yu,et al.  Challenges and Improvement Strategies Progress of Lithium Metal Anode , 2020 .

[75]  Genqiang Zhang,et al.  Realizing the synergy of Sn cluster incorporation and nitrogen doping for a carbonaceous hierarchical nanosheet-assembly enables superior universal alkali metal ion storage performance with multiple active sites , 2020 .

[76]  Kevin Huang,et al.  Fast Li-Ion Transport in Amorphous Li2Si2O5: An Ab Initio Molecular Dynamics Simulation , 2016 .