Mapping with synthetic 2D LIDAR in 3D urban environment

In this paper, we report a fully automated detailed mapping of a challenging urban environment using single LIDAR. To improve scan matching, extended correlative scan matcher is proposed. Also, a Monte Carlo loop closure detection is implemented to perform place recognition efficiently. Automatic recovery of the pose graph map in the presence of false place recognition is realized through a heuristic based loop closure rejection. This mapping framework is evaluated through experiments on the real world dataset obtained from NUS campus environment.

[1]  Karl Granström,et al.  Learning to detect loop closure from range data , 2009, 2009 IEEE International Conference on Robotics and Automation.

[2]  Udo Frese,et al.  Closing a Million-Landmarks Loop , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Wolfram Burgard,et al.  Nonlinear Constraint Network Optimization for Efficient Map Learning , 2009, IEEE Transactions on Intelligent Transportation Systems.

[4]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[5]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Niko Sünderhauf,et al.  Switchable constraints vs. max-mixture models vs. RRR - A comparison of three approaches to robust pose graph SLAM , 2013, 2013 IEEE International Conference on Robotics and Automation.

[7]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[8]  Edwin Olson,et al.  Inference on networks of mixtures for robust robot mapping , 2013, Int. J. Robotics Res..

[9]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[10]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[11]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[12]  Yasir Latif,et al.  Robust Loop Closing Over Time , 2012, Robotics: Science and Systems.

[13]  Terry Caelli,et al.  Computation of Surface Geometry and Segmentation Using Covariance Techniques , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Emilio Frazzoli,et al.  Curb-intersection feature based Monte Carlo Localization on urban roads , 2012, 2012 IEEE International Conference on Robotics and Automation.

[15]  Niko Sünderhauf,et al.  Towards a robust back-end for pose graph SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[17]  Emilio Frazzoli,et al.  Synthetic 2D LIDAR for precise vehicle localization in 3D urban environment , 2013, 2013 IEEE International Conference on Robotics and Automation.

[18]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Edwin Olson,et al.  Real-time correlative scan matching , 2009, 2009 IEEE International Conference on Robotics and Automation.

[20]  Craig M. Shakarji,et al.  Least-Squares Fitting Algorithms of the NIST Algorithm Testing System , 1998, Journal of research of the National Institute of Standards and Technology.

[21]  Marcelo H. Ang,et al.  Autonomy for mobility on demand , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  Yang Liu,et al.  Visual loop closure detection with a compact image descriptor , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.