PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks

[1]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Daniel Cohen-Or,et al.  EC-Net: an Edge-aware Point set Consolidation Network , 2018, ECCV.

[3]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[5]  Daniel Cohen-Or,et al.  Patch-Based Progressive 3D Point Set Upsampling , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Shadi Albarqouni,et al.  InceptionGCN: Receptive Field Aware Graph Convolutional Network for Disease Prediction , 2019, IPMI.

[7]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[8]  José García Rodríguez,et al.  PointNet: A 3D Convolutional Neural Network for real-time object class recognition , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[9]  Kyoung Mu Lee,et al.  Accurate Image Super-Resolution Using Very Deep Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Federico Tombari,et al.  SoftPoolNet: Shape Descriptor for Point Cloud Completion and Classification , 2020, ECCV.

[11]  Dong Tian,et al.  FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  Daniel Rueckert,et al.  Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Kyoung Mu Lee,et al.  Enhanced Deep Residual Networks for Single Image Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[15]  Shuiwang Ji,et al.  Graph U-Nets , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[17]  Jaewoo Kang,et al.  Self-Attention Graph Pooling , 2019, ICML.

[18]  Matthias Zwicker,et al.  Deep points consolidation , 2015, ACM Trans. Graph..

[19]  Cohen-OrDaniel,et al.  Computing and Rendering Point Set Surfaces , 2003 .

[20]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[21]  Martial Hebert,et al.  PCN: Point Completion Network , 2018, 2018 International Conference on 3D Vision (3DV).

[22]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[23]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[24]  Yifan Xu,et al.  SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters , 2018, ECCV.

[25]  H. Tal-Ezer,et al.  Parameterization-free projection for geometry reconstruction , 2007, SIGGRAPH 2007.

[26]  Sam Kwong,et al.  PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling , 2020, ECCV.

[27]  Daniel Cohen-Or,et al.  PU-GAN: A Point Cloud Upsampling Adversarial Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Bernard Ghanem,et al.  DeepGCNs: Making GCNs Go as Deep as CNNs , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[31]  Lu Sheng,et al.  Morphing and Sampling Network for Dense Point Cloud Completion , 2019, AAAI.

[32]  Jure Leskovec,et al.  Hierarchical Graph Representation Learning with Differentiable Pooling , 2018, NeurIPS.

[33]  Svetha Venkatesh,et al.  Column Networks for Collective Classification , 2016, AAAI.

[34]  Matthias Nießner,et al.  Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[36]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Bernard Ghanem,et al.  Leveraging Shape Completion for 3D Siamese Tracking , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Daniel Cohen-Or,et al.  Edge-aware point set resampling , 2013, ACM Trans. Graph..

[39]  Daniel Cohen-Or,et al.  PU-Net: Point Cloud Upsampling Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Shangchen Zhou,et al.  GRNet: Gridding Residual Network for Dense Point Cloud Completion , 2020, ECCV.

[41]  Zhen Li,et al.  High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[42]  Bernard Ghanem,et al.  DeepGCNs: Can GCNs Go As Deep As CNNs? , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Silvio Savarese,et al.  TopNet: Structural Point Cloud Decoder , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[46]  Andreas Geiger,et al.  Learning 3D Shape Completion from Laser Scan Data with Weak Supervision , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.