Quadrilateral Modelling and Robust Control of a
暂无分享,去创建一个
[1] J.G. Smits,et al. The constituent equations of piezoelectric heterogeneous bimorphs , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[2] Zhongwei Jiang,et al. Nonlinear Hysteresis Compensation of Piezoelectric Ceramic Actuators , 1996 .
[3] Keith Glover,et al. μ-analysis and synthesis toolbox: for use with Matlab, user’s guide version 3 , 1998 .
[4] Leonid Mirkin,et al. On discrete-time H∞ problem with a strictly proper controller , 1997 .
[5] José L. Pons,et al. Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .
[6] T. Low,et al. Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .
[7] J.-M. Breguet,et al. A smart microrobot on chip: design, identification and modeling , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).
[8] Stefan Seelecke,et al. Optimal control of piezoceramic actuators , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.
[9] John T. Wen,et al. Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1997 .
[10] Musa Jouaneh,et al. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .
[11] Hewon Jung,et al. New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep , 2000 .
[12] S. Li-ning,et al. Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .
[13] R. Ben Mrad,et al. A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .
[14] Meng-Shiun Tsai,et al. Robust Tracking Control of a Piezoactuator Using a New Approximate Hysteresis Model , 2003 .
[15] Bruce A. Francis,et al. Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.
[16] Michael Goldfarb,et al. A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .
[17] John A. Main,et al. Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls , 1997 .
[18] S. Lau,et al. Steady-state oscillation of hysteretic differential model. I: Response analysis , 1994 .
[19] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[20] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[21] K. Glover,et al. State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .
[22] Santosh Devasia,et al. Hysteresis and Vibration Compensation for Piezoactuators , 1998 .
[23] D. Croft,et al. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .
[24] Yassine Haddab,et al. A microgripper using smart piezoelectric actuators , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).
[25] Ephrahim Garcia,et al. Precision position control of piezoelectric actuators using charge feedback , 1995 .
[26] Zoubeida Ounaies,et al. A hysteresis model for piezoceramic materials , 1999 .
[27] I. Mayergoyz. Mathematical models of hysteresis and their applications , 2003 .
[28] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .