Perception of visual motion

[1]  R. Blake,et al.  Brain activity evoked by inverted and imagined biological motion , 2001, Vision Research.

[2]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[3]  O. Hikosaka,et al.  Visual attention revealed by an illusion of motion , 1993, Neuroscience Research.

[4]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[5]  G. Mather The Movement Aftereffect and a Distribution-Shift Model for Coding the Direction of Visual Movement , 1980, Perception.

[6]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[7]  R. Blake,et al.  The interplay between stereopsis and structure from motion , 1991, Perception & psychophysics.

[8]  U. Ahlström,et al.  Segregation of Motion Structure from Random Visual Noise , 1996, Perception.

[9]  S. Exner,et al.  Ueber optische Bewegungsempfindungen , 1888 .

[10]  James E. McCarthy Directional adaptation effects with contrast modulated stimuli , 1993, Vision Research.

[11]  S. Tipper,et al.  Priming reveals attentional modulation of human motion sensitivity , 1998, Vision Research.

[12]  S. Shimojo,et al.  When Sound Affects Vision: Effects of Auditory Grouping on Visual Motion Perception , 2001, Psychological science.

[13]  S. Nishida,et al.  Motion aftereffect with flickering test patterns reveals higher stages of motion processing , 1995, Vision Research.

[14]  R. Blake,et al.  Direction repulsion in motion transparency , 1996, Visual Neuroscience.

[15]  D. Heeger The Representation of Visual Stimuli in Primary Visual Cortex , 1994 .

[16]  Karl R. Gegenfurtner,et al.  Interaction of motion and color in the visual pathways , 1996, Trends in Neurosciences.

[17]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[18]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[19]  Robert Sekuler,et al.  Detection and identification of moving targets , 1983, Vision Research.

[20]  B. L. Gros,et al.  Anisotropies in visual motion perception: a fresh look. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  V. Ramachandran,et al.  Perceptual Organization in Multistable Apparent Motion , 1985, Perception.

[22]  Jeffrey D. Schall,et al.  Decision making: From sensory evidence to a motor command , 2000, Current Biology.

[23]  D Jancke,et al.  Orientation Formed by a Spot's Trajectory: A Two-Dimensional Population Approach in Primary Visual Cortex , 2000, The Journal of Neuroscience.

[24]  Matthew C Smear,et al.  Perception of Fourier and non-Fourier motion by larval zebrafish , 2000, Nature Neuroscience.

[25]  R. Sekuler,et al.  Mutual repulsion between moving visual targets. , 1979, Science.

[26]  R. Sekuler,et al.  Cues reduce direction uncertainty and enhance motion detection , 1981, Perception & psychophysics.

[27]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989 .

[28]  A. Cowey,et al.  Task–specific impairments and enhancements induced by magnetic stimulation of human visual area V5 , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  S. S. Stevens Mathematics, measurement, and psychophysics. , 1951 .

[30]  S. Yantis,et al.  Perceptual grouping in space and time: Evidence from the Ternus display , 1997, Perception & psychophysics.

[31]  R Sekuler,et al.  How the Visual System Detects Changes in the Direction of Moving Targets , 1990, Perception.

[32]  H. Barlow The neuron doctrine in perception. , 1995 .

[33]  S. Anand,et al.  The selectivity and timing of motion processing in human temporo–parieto–occipital and occipital cortex: a transcranial magnetic stimulation study , 1998, Neuropsychologia.

[34]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[35]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[36]  Brian J. Murphy,et al.  Summation and discrimination of gratings moving in opposite directions , 1980, Vision Research.

[37]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[38]  D. Lewkowicz Heterogeneity and heterochrony in the development of intersensory perception. , 2002, Brain research. Cognitive brain research.

[39]  H Barlow,et al.  Correspondence Noise and Signal Pooling in the Detection of Coherent Visual Motion , 1997, The Journal of Neuroscience.

[40]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[41]  R. Snowden Suppressive interactions between moving patterns: Role of velocity , 1990, Perception & psychophysics.

[42]  R Blake,et al.  Another perspective on the visual motion aftereffect. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[44]  K. Dobkins Moving Colors in the Lime Light , 2000, Neuron.

[45]  Takeo Watanabe,et al.  The role of parsing in high level motion processing , 1998 .

[46]  G. Laurent,et al.  Invariance of Angular Threshold Computation in a Wide-Field Looming-Sensitive Neuron , 2001, The Journal of Neuroscience.

[47]  R. Andersen,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters Perception of Three-dimensional Structure from Motion Review , 2022 .

[48]  R. Sekuler,et al.  Detection of changes in speed and direction of motion: Reaction time analysis , 1993, Perception & psychophysics.

[49]  James Campbell Quick,et al.  Creating healthier workplaces: The American Psychological Association/National Institute of Occupational Safety and Health cooperative agreement. Introduction and historical overview. , 1997, Journal of occupational health psychology.

[50]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[51]  S Ullman,et al.  Maximizing Rigidity: The Incremental Recovery of 3-D Structure from Rigid and Nonrigid Motion , 1984, Perception.

[52]  Michael von Grünau,et al.  A motion aftereffect for long-range troboscopic apparent motion , 1986 .

[53]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[54]  S. Nishida,et al.  Complete interocular transfer of motion aftereffect with flickering test , 1994, Vision Research.

[55]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  H. Barlow Vision: A theory about the functional role and synaptic mechanism of visual after-effects , 1991 .

[57]  Frans A. J. Verstraten,et al.  Directional Motion Sensitivity under Transparent Motion Conditions , 1996, Vision Research.

[58]  H. Barlow,et al.  The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures , 1981, Vision Research.

[59]  I. M. Spigel Contour absence as a critical factor in the inhibition of the decay of a movement aftereffect. , 1962 .

[60]  N. Kanwisher,et al.  Activation in Human MT/MST by Static Images with Implied Motion , 2000, Journal of Cognitive Neuroscience.

[61]  S. Watamaniuk Ideal observer for discrimination of the global direction of dynamic random-dot stimuli. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[62]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[64]  A. Cowey,et al.  Blindness to form from motion despite intact static form perception and motion detection , 2000, Neuropsychologia.

[65]  T. Albright,et al.  Image Segmentation Enhances Discrimination of Motion in Visual Noise , 1997, Vision Research.

[66]  V. Ramachandran,et al.  Visual inertia in apparent motion , 1987, Vision Research.

[67]  M. Shiffrar,et al.  Different motion sensitive units are involved in recovering the direction of moving lines , 1993, Vision Research.

[68]  R. Sekuler,et al.  Motion processing in peripheral vision: Reaction time and perceived velocity , 1982, Vision Research.

[69]  R Sekuler,et al.  Optic Flow Helps Humans Learn to Navigate through Synthetic Environments , 2000, Perception.

[70]  K. Yu,et al.  Can Semantic Knowledge Influence Motion Correspondence? , 2000, Perception.

[71]  J. Gibson,et al.  Motion parallax as a determinant of perceived depth. , 1959, Journal of experimental psychology.

[72]  D. Lindsey Direction repulsion in unfiltered and ring-filtered Julesz textures , 2001, Perception & psychophysics.

[73]  Andrew B. Watson,et al.  Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays , 1986 .

[74]  P. Thompson,et al.  Human speed perception is contrast dependent , 1992, Vision Research.

[75]  D. P. Gallogly,et al.  Direction biasing by brief apparent motion stimuli , 2000, Vision Research.

[76]  William H. Warren,et al.  Optic flow is used to control human walking , 2001, Nature Neuroscience.

[77]  Scott N. J. Watamaniuk,et al.  Seeing motion behind occluders , 1995, Nature.

[78]  S. Dakin,et al.  The role of relative motion computation in ‘direction repulsion’ , 2000, Vision Research.

[79]  C. Duffy,et al.  Visual loss and getting lost in Alzheimer’s disease , 1999, Neurology.

[80]  Myron L. Braunstein,et al.  PERCEPTION OF MOTION , 1978 .

[81]  R. Fox,et al.  The perception of biological motion by human infants. , 1982, Science.

[82]  G. Westheimer,et al.  Discrimination of direction of motion in human vision. , 1994, Journal of neurophysiology.

[83]  Scott N. J. Watamaniuk,et al.  Direction Perception in Complex Dynamic Displays: the Integration of Dir~~tion Information , 1988 .

[84]  J. Raymond Complete interocular transfer of motion adaptation effects on motion coherence thresholds , 1993, Vision Research.

[85]  R. Blake,et al.  Interocular Transfer of Expansion, Rotation, and Translation Motion Aftereffects , 1994, Perception.

[86]  Stefan Treue,et al.  Different populations of neurons contribute to the detection and discrimination of visual motion , 2001, Vision Research.

[87]  I. M. Spigel THE USE OF DECAY INHIBITION IN AN EXAMINATION OF CENTRAL MEDIATION IN MOVEMENT AFTEREFFECTS. , 1964, The Journal of general psychology.

[88]  G J Andersen Perception of three-dimensional structure from optic flow without locally smooth velocity. , 1989, Journal of experimental psychology. Human perception and performance.

[89]  R. Sekuler,et al.  Aftereffect of Seen Motion with a Stabilized Retinal Image , 1963, Science.

[90]  Alexander Borst,et al.  Models of motion detection , 2000, Nature Neuroscience.

[91]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[92]  G. Francis,et al.  Motion Parallel to Line Orientation: Disambiguation of Motion Percepts , 1999, Perception.

[93]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  R. Blake,et al.  Neural strength of visual attention gauged by motion adaptation , 1999, Nature Neuroscience.

[95]  Robert H. Brown,et al.  Visual sensitivity to differences in velocity. , 1961 .

[96]  J. Lappin,et al.  Coherence of early motion signals , 2001, Vision Research.

[97]  A. Watson Probability summation over time , 1979, Vision Research.

[98]  Scott N. J. Watamaniuk,et al.  Temporal and spatial integration in dynamic random-dot stimuli , 1992, Vision Research.

[99]  G. Mather,et al.  Gender discrimination in biological motion displays based on dynamic cues , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[100]  J. Robson,et al.  Discrimination at threshold: Labelled detectors in human vision , 1981, Vision Research.

[101]  Frans A. J. Verstraten,et al.  Movement aftereffect of bi-vectorial transparent motion , 1994, Vision Research.

[102]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  D. Regan Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast , 1989, Vision Research.

[104]  H. Barlow The absolute efficiency of perceptual decisions. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[105]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[106]  A. Watson,et al.  The optimal motion stimulus , 1995, Vision Research.

[107]  A. Cowey,et al.  Perception of first‐ and second‐order motion: Separable neurological mechanisms? , 1999, Human brain mapping.

[108]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[109]  R. Sekuler,et al.  Hysteresis in the perception of motion direction as evidence for neural cooperativity , 1986, Nature.

[110]  B. Albensi,et al.  The Differential Optomotor Response of the Four-Eyed Fish Anableps Anableps , 1998, Perception.

[111]  J. Rothwell,et al.  Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity , 2000, Current Opinion in Neurobiology.

[112]  T. Schenk,et al.  Visual motion perception after brain damage: I. Deficits in global motion perception , 1997, Neuropsychologia.

[113]  M. J. Wright,et al.  Matching velocity in central and peripheral vision , 1986, Vision Research.

[114]  T. Ledgeway Adaptation to second-order motion results in a motion aftereffect for directionally-ambiguous test stimuli , 1994, Vision Research.

[115]  Andrew P. Duchon,et al.  The human visual system averages speed information , 1992, Vision Research.

[116]  Preeti Verghese,et al.  PII: S0042-6989(98)00033-9 , 1998 .

[117]  M Nawrot,et al.  A neural network model of kinetic depth , 1991, Visual Neuroscience.

[118]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[119]  T. Pasternak,et al.  Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. , 1999, Cerebral cortex.

[120]  Frans A. J. Verstraten,et al.  Temporal and Spatial Frequency Tuning of the Flicker Motion Aftereffect , 1996, Vision Research.

[121]  H. Barlow The efficiency of detecting changes of density in random dot patterns , 1978, Vision Research.

[122]  G. L. Zimmerman,et al.  Evidence That Luminant and Equiluminant Motion Signals are Integrated by Directionally Selective Mechanisms , 1995, Perception.

[123]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.

[124]  James E. Cutting,et al.  Perception with an eye for motion , 1986 .

[125]  N. Graham Visual Pattern Analyzers , 1989 .

[126]  Nicholas G. Hatsopoulos,et al.  On the sufficiency of the velocity field for perception of heading , 1991, Biological Cybernetics.

[127]  S. McKee A local mechanism for differential velocity detection , 1981, Vision Research.

[128]  O. Braddick,et al.  Speed and direction of locally-paired dot patterns , 2000, Vision Research.

[129]  A. Yonas,et al.  Perception of three-dimensional shape specified by optic flow by 8-week-old infants , 2000, Perception & psychophysics.

[130]  M. Rizzo,et al.  Perception of movement and shape in Alzheimer's disease. , 1998, Brain : a journal of neurology.

[131]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  Frans A. J. Verstraten,et al.  Visual motion and the human brain: what has neuroimaging told us? , 2001, Acta psychologica.

[133]  R. Blake,et al.  Detection of temporal structure depends on spatial structure , 1999, Vision Research.

[134]  Thomas D Albright,et al.  Seeing the Big Picture Integration of Image Cues in the Primate Visual System , 1999, Neuron.

[135]  F. Tong Brain at work: play by play , 2001, Nature Neuroscience.

[136]  P. Viviani,et al.  The effect of movement velocity on form perception: Geometric illusions in dynamic displays , 1989, Perception & psychophysics.

[137]  Robert Patterson,et al.  Stereoscopic (cyclopean) motion sensing , 1999, Vision Research.

[138]  S. Mateeff,et al.  The simple reaction time to changes in direction of visual motion , 1999, Experimental Brain Research.

[139]  A Pantle,et al.  A multistable movement display: evidence for two separate motion systems in human vision. , 1976, Science.

[140]  R. Blake,et al.  Perception of coherent motion, biological motion and form-from-motion under dim-light conditions , 1999, Vision Research.

[141]  R. Blake,et al.  Memory for visual motion. , 1997, Journal of experimental psychology. Human perception and performance.

[142]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[143]  C. Baker,et al.  Spatial frequency selective mechanisms underlying the motion aftereffect , 1992, Vision Research.

[144]  M. Spetch,et al.  Perception of coherent motion in random dot displays by pigeons and humans , 1999, Perception & psychophysics.

[145]  George Sperling,et al.  A Systems Analysis of Visual Motion Perception , 1999 .

[146]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[147]  A. Pantle,et al.  On the mechanism that encodes the movement of contrast variations: Velocity discrimination , 1989, Vision Research.

[148]  S P Tripathy,et al.  Insights into motion perception by observer modeling. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[149]  D. Burr,et al.  Large receptive fields for optic flow detection in humans , 1998, Vision Research.

[150]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[151]  S. McKee,et al.  Temporal coherence theory for the detection and measurement of visual motion , 1995, Vision Research.

[152]  P. Bennett,et al.  Spatial phase differences can drive apparent motion , 1996, Perception & psychophysics.

[153]  Lee Dn,et al.  The optic flow field: the foundation of vision. , 1980 .

[154]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[155]  R. Blake,et al.  Another means for measuring the motion aftereffect , 1993, Vision Research.

[156]  David C. Burr,et al.  Seeing biological motion , 1998, Nature.

[157]  S. Yantis Multielement visual tracking: Attention and perceptual organization , 1992, Cognitive Psychology.

[158]  E. Wist,et al.  The spatial frequency effect on perceived velocity , 1976, Vision Research.

[159]  S. McKee,et al.  Detecting a trajectory embedded in random-direction motion noise , 1995, Vision Research.

[160]  V. Hömberg,et al.  Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5 , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[161]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[162]  T. Pasternak,et al.  Microstimulation of cortical area MT affects performance on a visual working memory task. , 2001, Journal of neurophysiology.

[163]  A. T. Smith,et al.  The separability of temporal frequency and velocity , 1991, Vision Research.

[164]  L A Riggs,et al.  Visual aftereffects derived from inspection of orthogonally moving patterns. , 1980, Science.

[165]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[166]  K. Gegenfurtner,et al.  Motion perception at scotopic light levels. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[167]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[168]  R. Sekuler,et al.  The independence of channels in human vision selective for direction of movement. , 1975, The Journal of physiology.

[169]  R. Sekuler,et al.  Representational Development of Direction in Motion Perception: A Fragile Process , 1993, Perception.

[170]  A. Derrington,et al.  Detecting and discriminating the direction of motion of luminance and colour gratings , 1993, Vision Research.

[171]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[172]  G. Orban,et al.  Factors influencing velocity coding in the human visual system , 1984, Vision Research.

[173]  S. McKee,et al.  Precise velocity discrimination despite random variations in temporal frequency and contrast , 1986, Vision Research.

[174]  R O Dror,et al.  Accuracy of velocity estimation by Reichardt correlators. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[175]  R. Blake Cats Perceive Biological Motion , 1993 .

[176]  R. Sekuler,et al.  Assimilation and contrast in motion perception: Explorations in cooperativity , 1990, Vision Research.

[177]  R. Sekuler,et al.  Improving visual perception in older observers. , 1986, Journal of gerontology.

[178]  K. Nakayama Differential motion hyperacuity under conditions of common image motion , 1981, Vision Research.

[179]  Mary J. Bravo,et al.  Evidence for two speed signals: a coarse local signal for segregation and a precise global signal for discrimination , 1995, Vision Research.

[180]  Irwin M. Spigel,et al.  Relation of movement aftereffect duration to interpolated darkness intervals , 1962 .

[181]  James T. Todd,et al.  Opponent motion interactions , 1998 .

[182]  P. Bennett,et al.  Effects of aging on calculation efficiency and equivalent noise. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[183]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[184]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[185]  Guy A. Orban,et al.  Segregation of spatially superimposed optic flow components. , 1993, Journal of experimental psychology. Human perception and performance.

[186]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[187]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[188]  B. Frost,et al.  Common reference frame for neural coding of translational and rotational optic flow , 1998, Nature.

[189]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[190]  R. Sekuler,et al.  Sound alters visual motion perception , 1997, Nature.

[191]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[192]  A. W. Blackwell,et al.  Perception of circular heading from optical flow. , 1991 .

[193]  M. Chun,et al.  Top-Down Attentional Guidance Based on Implicit Learning of Visual Covariation , 1999 .

[194]  R. Sekuler,et al.  Psychophysics of Motion Perception , 1982 .

[195]  D G Pelli,et al.  Why use noise? , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[196]  P. Bennett,et al.  Identification of band-pass filtered letters and faces by human and ideal observers , 1999, Vision Research.

[197]  W. Newsome,et al.  Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[198]  H. Leibowitz Effect of reference lines on the discrimination of movement. , 1955, Journal of the Optical Society of America.

[199]  R. Blake,et al.  Perception of Biological Motion , 1997, Perception.

[200]  L. A. Symons,et al.  The Aftereffect to Relative Motion Does Not Show Interocular Transfer , 1996, Perception.

[201]  Frans A. J. Verstraten,et al.  Motion transparency: making models of motion perception transparent , 1999, Trends in Cognitive Sciences.

[202]  S. Brownlow,et al.  Perception of movement and dancer characteristics from point-light displays of dance , 1997 .

[203]  Fred Attneave,et al.  Apparent movement and the what-where connection. , 1974 .

[204]  Z W Pylyshyn,et al.  Tracking multiple independent targets: evidence for a parallel tracking mechanism. , 1988, Spatial vision.

[205]  A. W. Blackwell,et al.  Age differences in perceiving the direction of self-motion from optical flow. , 1989, Journal of gerontology.

[206]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[207]  T. Pasternak Discrimination of differences in speed and flicker rate depends on directionally selective mechanisms , 1987, Vision Research.

[208]  John Thorson,et al.  Objective Measure of the Dynamics of a Visual Movement Illusion , 1969, Science.

[209]  H. B. Barlow,et al.  The precision of numerosity discrimination in arrays of random dots , 1983, Vision Research.

[210]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[211]  Randolph Blake,et al.  Detection and discrimination of optical flow components , 1998 .

[212]  N. P. Bichot,et al.  Reliability of Macaque Frontal Eye Field Neurons Signaling Saccade Targets during Visual Search , 2001, The Journal of Neuroscience.

[213]  I. M. Spigel The Effects of Differential Post-Exposure Illumination on the Decay of a Movement After-Effect , 1960 .

[214]  R. Blake,et al.  On the perceptual identity of dynamic stereopsis and kinetic depth , 1993, Vision Research.

[215]  C. M. D. de Weert,et al.  On Interocular Transfer of Motion Aftereffects , 1993, Perception.

[216]  Frans A. J. Verstraten,et al.  Recovery from adaptation for dynamic and static motion aftereffects: Evidence for two mechanisms , 1996, Vision Research.

[217]  A. V. D. Berg,et al.  Robustness of perception of heading from optic flow , 1992, Vision Research.

[218]  H. Barlow,et al.  Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural After-effects , 1963, Nature.

[219]  H. Barlow,et al.  The versatility and absolute efficiency of detecting mirror symmetry in random dot displays , 1979, Vision Research.

[220]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[221]  David N. Lee,et al.  A Theory of Visual Control of Braking Based on Information about Time-to-Collision , 1976, Perception.

[222]  R. F. Wagner,et al.  Efficiency of human visual signal discrimination. , 1981, Science.

[223]  T. Pasternak,et al.  The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. , 2000, Cerebral cortex.

[224]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[225]  E. Leeuwenberg,et al.  Vision: Space and movement: Volume 1, chapter 3, pp. 165–193 by Gerald Westheimer , 1990 .

[226]  R. Shapley,et al.  “On the Visually Perceived Direction of Motion” by Hans Wallach: 60 Years Later , 1996 .

[227]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[228]  W. H. Warren,et al.  Visual control of step length during running over irregular terrain. , 1986, Journal of experimental psychology. Human perception and performance.

[229]  T. Tayama The Minimum Temporal Thresholds for Motion Detection of Grating Patterns , 2000, Perception.

[230]  David Bradley MT signals: better with time , 2001, Nature Neuroscience.

[231]  M. Dawson,et al.  The how and why of what went where in apparent motion: modeling solutions to the motion correspondence problem. , 1991, Psychological review.

[232]  J. Raymond Attentional modulation of visual motion perception , 2000, Trends in Cognitive Sciences.

[233]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[234]  Scott M. Dittman,et al.  Monocular optical constraints on collision control. , 2001, Journal of experimental psychology. Human perception and performance.

[235]  J. Tresilian Visually timed action: time-out for ‘tau’? , 1999, Trends in Cognitive Sciences.

[236]  G. Orban,et al.  Human velocity and direction discrimination measured with random dot patterns , 1988, Vision Research.

[237]  S. McKee,et al.  Simultaneous encoding of direction at a local and global scale , 1998, Perception & psychophysics.

[238]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[239]  R. Snowden Sensitivity to Relative and Absolute Motion , 1992, Perception.

[240]  M. Greenlee,et al.  Retention and disruption of motion information in visual short-term memory. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[241]  Paul R. Schrater,et al.  Perceiving visual expansion without optic flow , 2001, Nature.

[242]  A. Pantle Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzers. , 1974, Vision research.

[243]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.