Model Vulnerability to Distributional Shifts over Image Transformation Sets

We are concerned with the vulnerability of computer vision models to distributional shifts. We formulate a combinatorial optimization problem that allows evaluating the regions in the image space where a given model is more vulnerable, in terms of image transformations applied to the input, and face it with standard search algorithms. We further embed this idea in a training procedure, where we define new data augmentation rules according to the image transformations that the current model is most vulnerable to, over iterations. An empirical evaluation on classification and semantic segmentation problems suggests that the devised algorithm allows to train models that are more robust against content-preserving image manipulations and, in general, against distributional shifts.

[1]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[2]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Policies from Data , 2018, ArXiv.

[3]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[4]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[5]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[6]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[7]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[8]  Vittorio Murino,et al.  Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation , 2017, ICLR.

[9]  Jaeho Lee,et al.  Minimax Statistical Learning and Domain Adaptation with Wasserstein Distances , 2017, ArXiv.

[10]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.

[11]  Wojciech Zaremba,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[13]  Silvio Savarese,et al.  Generalizing to Unseen Domains via Adversarial Data Augmentation , 2018, NeurIPS.

[14]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Universal Adversarial Perturbations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[16]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[17]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[18]  Ryan P. Adams,et al.  Motivating the Rules of the Game for Adversarial Example Research , 2018, ArXiv.

[19]  Donald A. Adjeroh,et al.  Unified Deep Supervised Domain Adaptation and Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[20]  Yongxin Yang,et al.  Episodic Training for Domain Generalization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[21]  Silvio Savarese,et al.  Adversarial Feature Augmentation for Unsupervised Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Barbara Caputo,et al.  Robust Place Categorization With Deep Domain Generalization , 2018, IEEE Robotics and Automation Letters.

[23]  Ameet Talwalkar,et al.  Random Search and Reproducibility for Neural Architecture Search , 2019, UAI.

[24]  Siddhartha Chaudhuri,et al.  Generalizing Across Domains via Cross-Gradient Training , 2018, ICLR.

[25]  Radha Poovendran,et al.  Semantic Adversarial Examples , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[26]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[27]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[28]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[29]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[30]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[31]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[32]  Yuxiao Hu,et al.  MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition , 2016, ECCV.

[33]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[34]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[35]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[36]  Christina Heinze-Deml,et al.  Conditional variance penalties and domain shift robustness , 2017, Machine Learning.

[37]  Benjamin Recht,et al.  Do CIFAR-10 Classifiers Generalize to CIFAR-10? , 2018, ArXiv.

[38]  Benjamin Recht,et al.  Do ImageNet Classifiers Generalize to ImageNet? , 2019, ICML.

[39]  Nicolò Cesa-Bianchi,et al.  Advances in Neural Information Processing Systems 31 , 2018, NIPS 2018.

[40]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[41]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[42]  Isabelle Guyon,et al.  Neural Network Recognizer for Hand-Written Zip Code Digits , 1988, NIPS.

[43]  Christina Heinze-Deml,et al.  Guarding Against Adversarial Domain Shifts with Counterfactual Regularization , 2017, ArXiv.

[44]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[45]  Wei Zhou,et al.  Feature-Critic Networks for Heterogeneous Domain Generalization , 2019, ICML.

[46]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[47]  John C. Duchi,et al.  Certifying Some Distributional Robustness with Principled Adversarial Training , 2017, ICLR.

[48]  Radha Poovendran,et al.  Deep Neural Networks Do Not Recognize Negative Images , 2017, ArXiv.

[49]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  John C. Duchi,et al.  Certifiable Distributional Robustness with Principled Adversarial Training , 2017, ArXiv.

[51]  Augustin-Louis Cauchy,et al.  ANALYSE MATHÉMATIQUE. – Méthodc générale pour la résolution des systèmes d'équations simultanées , 2009 .

[52]  Roberto Cipolla,et al.  Segmentation and Recognition Using Structure from Motion Point Clouds , 2008, ECCV.

[53]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Jaeho Lee,et al.  Minimax Statistical Learning with Wasserstein distances , 2017, NeurIPS.

[55]  Yoshua Bengio,et al.  The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[56]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[57]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .