Chapter 4 Evolutionary Design of a Model of Self-Assembling Chemical Structures

Abstract We introduce a new variant of dissipative particle dynamics (DPD) models that include the possibility of dynamically forming and breaking strong bonds. This model exhibits different forms of self-assembly processes; some like micelle formation involve only weak bonds, and others like the ligation of oligomers involve both weak and strong bonds. Complex self-assembly processes are notoriously difficult to design and program. We empirically demonstrate an evolutionary algorithm that optimizes self-assembly processes like micelle formation and template-directed ligation.

[1]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[2]  Berend Smit,et al.  Phase Behavior and Induced Interdigitation in Bilayers Studied with Dissipative Particle Dynamics , 2003 .

[3]  G. F. Joyce,et al.  Continuous in vitro evolution of catalytic function. , 1997, Science.

[4]  J W Szostak,et al.  In vitro selection of catalytic RNAs. , 1994, Current opinion in structural biology.

[5]  L E Orgel,et al.  Enzymatic synthesis of polymers containing nicotinamide mononucleotide. , 1995, Nucleic acids research.

[6]  Karttunen,et al.  Towards better integrators for dissipative particle dynamics simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  L E Orgel,et al.  Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C, U) templates. , 1984, Journal of molecular biology.

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[9]  Satoru Yamamoto,et al.  Budding and fission dynamics of two-component vesicles , 2003 .

[10]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[11]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm. , 1996 .

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  Ilpo Vattulainen,et al.  Integration schemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models , 2002, cond-mat/0211332.

[14]  S. Hyodo,et al.  Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules , 2002 .

[15]  Julius Rebek,et al.  A Self-Replicating System. , 1990 .

[16]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[17]  Günter von Kiedrowski,et al.  A Self‐Replicating Hexadeoxynucleotide , 1986 .

[18]  Mark A. Bedau,et al.  Catalysis by Self-Assembled Structures in Emergent Reaction Networks , 2007, ECAL.

[19]  Mark A. Bedau,et al.  Optimal Formulation of Complex Chemical Systems with a Genetic Algorithm , 2006 .

[20]  Reinhard Lipowsky,et al.  Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations , 2002 .

[21]  W. Oechel,et al.  Automatic design and manufacture of robotic lifeforms , 2022 .

[22]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[23]  Jordan B. Pollack,et al.  Three Generations of Automatically Designed Robots , 2001, Artificial Life.

[24]  L. Orgel,et al.  Template switching between PNA and RNA oligonucleotides , 1995, Nature.

[25]  Maj Thijs Michels,et al.  Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures , 2002 .

[26]  John S. McCaskill,et al.  Evolutionary Design of a DDPD Model of Ligation , 2005, Artificial Evolution.

[27]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[28]  J W Szostak,et al.  Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3'-5' phosphodiester bonds. , 1996, Journal of the American Chemical Society.

[29]  Edward P. Jaeger,et al.  Application of Genetic Algorithms to Combinatorial Synthesis: A Computational Approach to Lead Identification and Lead Optimization†,∇ , 1996 .

[30]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  C. Titus Brown,et al.  Visualizing Evolutionary Activity of Genotypes , 1998, Artificial Life.

[33]  M. Bedau Measurement of Evolutionary Activity, Teleology, and Life , 1996 .

[34]  Jordan B. Pollack,et al.  Embodied Evolution: Distributing an evolutionary algorithm in a population of robots , 2002, Robotics Auton. Syst..

[35]  N. Packard,et al.  Transitions from Nonliving to Living Matter , 2004, Science.

[36]  G. F. Joyce,et al.  Directed evolution of nucleic acid enzymes. , 2003, Annual review of biochemistry.

[37]  Charles E. Taylor,et al.  Artificial Life II , 1991 .

[38]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[39]  L. Orgel,et al.  The limits of template-directed synthesis with nucleoside-5′-phosphoro(2-methyl)imidazolides , 1993, Origins of life and evolution of the biosphere.

[40]  Reddington,et al.  Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts , 1998, Science.

[41]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[42]  L E Orgel,et al.  Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3'-amino-3'-deoxy-nucleotides (GC and CG) in aqueous solution. , 1987, Nucleic acids research.

[43]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[44]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[45]  Stefano Nolfi,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines , 2000 .

[46]  Mark A. Bedau,et al.  General Framework for Evolutionary Activity , 2003, ECAL.

[47]  L E Orgel,et al.  Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long. , 1987, Journal of molecular biology.

[48]  R. Lerner,et al.  Encoded combinatorial chemistry. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Michael E. Cates,et al.  Simulation of amphiphilic mesophases using dissipative particle dynamics , 1999 .

[50]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[51]  N. Packard,et al.  A classification of long-term evolutionary dynamics , 1998 .

[52]  B. Stoddard,et al.  Combinatorial thinking in chemistry and biology. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[54]  C. Tuerk,et al.  SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. , 1991, Journal of molecular biology.