Step reference tracking in signal-to-noise ratio constrained feedback control

In this paper we address the problem of step reference tracking in the context of signal-to-noise ratio (SNR) constrained feedback control. We study the presence of a channel model in the feedback loop either over the measurement path, between the plant and the controller, or the control path, between the controller and the plant. We start the analysis by considering the memoryless additive white Gaussian noise (AWGN) channel model, and follow-up with the additive coloured Gaussian noise (ACGN) channel with memory model. We observe that the standard SNR constrained feedback loop configuration, when tracking step references, will result in an infinite channel SNR. We show that this situation can be ameliorated by extending the feedback loop configuration with an encoder and decoder. The proposed configurations result in a finite SNR that converges back to the infimal SNR for regulation when the amplitude of the reference signal tends to zero.

[1]  Ertem Tuncel,et al.  Optimal tracking over an additive white noise feedback channel , 2009, 2009 7th Asian Control Conference.

[2]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[3]  Alejandro J. Rojas,et al.  Robust signal-to-noise ratio constrained feedback control , 2014, 2014 American Control Conference.

[4]  Charalambos D. Charalambous,et al.  LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels , 2008, Autom..

[5]  Alejandro J. Rojas,et al.  Signal-to-noise ratio fundamental limitations in the discrete-time domain , 2012, Syst. Control. Lett..

[6]  Alejandro J. Rojas,et al.  On the Discrete-Time Algebraic Riccati Equation and Its Solution in Closed-Form , 2011 .

[7]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[8]  Ertem Tuncel,et al.  Optimal tracking over an additive white Gaussian noise channel , 2009, 2009 American Control Conference.

[9]  Alejandro J. Rojas,et al.  Linear quadratic gaussian optimization approach for signal-to-noise ratio constrained control over network , 2009 .

[10]  Richard H. Middleton,et al.  Fundamental limitations in control over a communication channel , 2008, Autom..

[11]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[12]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[13]  Graham C. Goodwin,et al.  Control system design subject to SNR constraints , 2010, Autom..

[14]  Richard H. Middleton,et al.  Channel signal-to-noise ratio constrained feedback control: performance and robustness , 2008 .

[15]  Hongjiu Yang,et al.  Networked control for delta operator systems subject to actuator saturation , 2014 .

[16]  Qing Zhao,et al.  Observer-based networked control with probabilistic interval input delays , 2014 .

[17]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[18]  Zhi-Hong Guan,et al.  Tracking under additive white Gaussian noise effect , 2009, 2009 7th Asian Control Conference.

[19]  Eduardo I. Silva,et al.  Performance limitations for single-input LTI plants controlled over SNR constrained channels with feedback , 2013, Autom..

[20]  Victor Solo,et al.  Stabilization and Disturbance Attenuation Over a Gaussian Communication Channel , 2010, IEEE Transactions on Automatic Control.

[21]  Brian D. O. Anderson Transfer function matrix description of decentralized fixed modes , 1981, CDC 1981.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  A. Rantzer Linear quadratic team theory revisited , 2006, 2006 American Control Conference.

[24]  Karl Johan Åström,et al.  Zeros of sampled systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[25]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.