Retrosplenial cortex maps the conjunction of internal and external spaces

Intelligent behavior demands not only multiple forms of spatial representation, but also coordination among the brain regions mediating those representations. Retrosplenial cortex is densely interconnected with the majority of cortical and subcortical brain structures that register an animal's position in multiple internal and external spatial frames of reference. This unique anatomy suggests that it functions to integrate distinct forms of spatial information and provides an interface for transformations between them. Evidence for this was found in rats traversing two different routes placed at different environmental locations. Retrosplenial ensembles robustly encoded conjunctions of progress through the current route, position in the larger environment and the left versus right turning behavior of the animal. Thus, the retrosplenial cortex has the requisite dynamics to serve as an intermediary between brain regions generating different forms of spatial mapping, a result that is consistent with navigational and episodic memory impairments following damage to this region in humans.

[1]  Jonathan D. Cohen,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006 .

[2]  Etienne Save,et al.  The retrosplenial cortex is necessary for path integration in the dark , 2014, Behavioural Brain Research.

[3]  Matthew T. Kaufman,et al.  A category-free neural population supports evolving demands during decision-making , 2014, Nature Neuroscience.

[4]  Alain Berthoz,et al.  Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame , 2013, Behavioural Brain Research.

[5]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[6]  B. J. Clark,et al.  Interaction of Egocentric and World-Centered Reference Frames in the Rat Posterior Parietal Cortex , 2014, The Journal of Neuroscience.

[7]  S. Becker,et al.  Remembering the past and imagining the future: a neural model of spatial memory and imagery. , 2007, Psychological review.

[8]  S J Mizumori,et al.  Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. , 2001, Behavioral neuroscience.

[9]  Hiroshi Moriwaki,et al.  Memory impairment and spatial disorientation following a left retrosplenial lesion , 2001, Journal of Clinical Neuroscience.

[10]  Michael W. Miller,et al.  Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices , 1983, The Journal of comparative neurology.

[11]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[12]  Douglas A Nitz,et al.  Spaces within spaces: rat parietal cortex neurons register position across three reference frames , 2012, Nature Neuroscience.

[13]  C. Büchel,et al.  Dissociable Retrosplenial and Hippocampal Contributions to Successful Formation of Survey Representations , 2005, The Journal of Neuroscience.

[14]  Jørgen Sugar,et al.  Superficially Projecting Principal Neurons in Layer V of Medial Entorhinal Cortex in the Rat Receive Excitatory Retrosplenial Input , 2013, The Journal of Neuroscience.

[15]  Mayank R. Mehta,et al.  Multisensory Control of Hippocampal Spatiotemporal Selectivity , 2013, Science.

[16]  T. van Groen,et al.  Connections of the retrosplenial granular b cortex in the rat , 1990, The Journal of comparative neurology.

[17]  E. J. Green,et al.  Head-direction cells in the rat posterior cortex , 1994, Experimental Brain Research.

[18]  Douglas A Nitz,et al.  Path shape impacts the extent of CA1 pattern recurrence both within and across environments. , 2011, Journal of neurophysiology.

[19]  Karl J. Zilles,et al.  The Cortex of the Rat: A Stereotaxic Atlas , 1985 .

[20]  E Valenstein,et al.  Retrosplenial amnesia. , 1987, Brain : a journal of neurology.

[21]  Sheri J. Y. Mizumori,et al.  Finding your way in the dark: The retrosplenial cortex contributes to spatial memory and navigation without visual cues. , 2001 .

[22]  David J. Bucci,et al.  Involvement of the retrosplenial cortex in processing multiple conditioned stimuli. , 2008, Behavioral neuroscience.

[23]  T. van Groen,et al.  Connections of the retrosplenial granular a cortex in the rat , 1990, The Journal of comparative neurology.

[24]  E. J. Green,et al.  Cortical representation of motion during unrestrained spatial navigation in the rat. , 1994, Cerebral cortex.

[25]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[26]  S. Mizumori,et al.  Retrosplenial cortex inactivation selectively impairs navigation in darkness. , 1999, Neuroreport.

[27]  P. E. Sharp,et al.  Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. , 2001, Behavioral neuroscience.

[28]  J M Wyss,et al.  Connections of the retrosplenial dysgranular cortex in the rat , 1992, The Journal of comparative neurology.

[29]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[30]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[31]  R. L. Reep,et al.  Rat posterior parietal cortex: topography of corticocortical and thalamic connections , 2004, Experimental Brain Research.

[32]  Eleanor A. Maguire,et al.  Assessing the mechanism of response in the retrosplenial cortex of good and poor navigators☆ , 2013, Cortex.

[33]  R. M. Siegel,et al.  Neurons of area 7 activated by both visual stimuli and oculomotor behavior , 2004, Experimental Brain Research.

[34]  H. Fukuyama,et al.  Directional Disorientation Following Left Retrosplenial Hemorrhage: a Case Report with FMRI Studies , 2007, Cortex.

[35]  Alcino J. Silva,et al.  Encoding and storage of spatial information in the retrosplenial cortex , 2014, Proceedings of the National Academy of Sciences.

[36]  David J. Bucci,et al.  Damage to the retrosplenial cortex produces specific impairments in spatial working memory , 2009, Neurobiology of Learning and Memory.

[37]  Douglas A Nitz,et al.  Repeating Firing Fields of CA1 Neurons Shift Forward in Response to Increasing Angular Velocity , 2014, The Journal of Neuroscience.

[38]  Eleanor A. Maguire,et al.  Thoughts, behaviour, and brain dynamics during navigation in the real world , 2006, NeuroImage.

[39]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Gerit Pfuhl,et al.  Functional Split between Parietal and Entorhinal Cortices in the Rat , 2012, Neuron.

[41]  Jerome Davis,et al.  Complimentary Roles of the Pediatrician and Educator in School Planning for Handicapped Children , 1969 .

[42]  Ann Allergy,et al.  O R I G I N a L a R T I C L E S , 2022 .

[43]  A. Pouget,et al.  Reference frames for representing visual and tactile locations in parietal cortex , 2005, Nature Neuroscience.

[44]  Katherine R. Sherrill,et al.  Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation , 2013, The Journal of Neuroscience.

[45]  Michael E Hasselmo,et al.  Medial entorhinal grid cells and head direction cells rotate with a T-maze more often during less recently experienced rotations. , 2014, Cerebral cortex.

[46]  Douglas Nitz,et al.  Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information , 2009, Neurobiology of Learning and Memory.

[47]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[49]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[50]  J. Aggleton,et al.  The rat retrosplenial cortex is required when visual cues are used flexibly to determine location , 2014, Behavioural Brain Research.

[51]  Seralynne D Vann,et al.  Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial-arm maze task. , 2005, Behavioral neuroscience.

[52]  David M. Smith,et al.  Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination , 2012, Hippocampus.

[53]  J. Michael Wyass,et al.  Connections between the retrosplenial cortex and the hippocampal formation in the rat: A review , 1992, Hippocampus.

[54]  Prof. Dr. Karl Zilles The Cortex of the Rat , 1985, Springer Berlin Heidelberg.

[55]  S. Mizumori,et al.  Temporary Inactivation of the Retrosplenial Cortex Causes a Transient Reorganization of Spatial Coding in the Hippocampus , 2001, The Journal of Neuroscience.

[56]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[57]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[58]  D. Nitz Tracking Route Progression in the Posterior Parietal Cortex , 2006, Neuron.