Pyramidal Cells Make Specific Connections onto Smooth (GABAergic) Neurons in Mouse Visual Cortex

Light and electron microscopy of the primary visual cortex of mice indicates that pyramidal neurons connect preferentially to inhibitory neurons.

[1]  C. Clopath,et al.  The emergence of functional microcircuits in visual cortex , 2013, Nature.

[2]  L. Arranz,et al.  Network anatomy and in vivo physiology of mesenchymal stem and stromal cells , 2013 .

[3]  Morgane M. Roth,et al.  Distinct Functional Properties of Primary and Posteromedial Visual Area of Mouse Neocortex , 2012, The Journal of Neuroscience.

[4]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[5]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[6]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[7]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[8]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[9]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[10]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[11]  Kevan A. C. Martin,et al.  A systematic random sampling scheme optimized to detect the proportion of rare synapses in the neuropil , 2009, Journal of Neuroscience Methods.

[12]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[13]  M. Bear,et al.  Anatomical origins of ocular dominance in mouse primary visual cortex , 2009, Neuroscience.

[14]  Andrew D. Straw,et al.  Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.

[15]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[16]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[17]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[18]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[19]  Johannes J. Letzkus,et al.  Cortical feed-forward networks for binding different streams of sensory information , 2006, Nature Neuroscience.

[20]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[21]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[22]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[23]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[24]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[25]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[26]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[27]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[28]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[29]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[30]  D. Whitteridge,et al.  Physiological and morphological properties of identified basket cells in the cat's visual cortex , 2004, Experimental Brain Research.

[31]  P. Somogyi,et al.  Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat , 2004, Experimental Brain Research.

[32]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[33]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[35]  R. Lund,et al.  Receptive field properties of single neurons in rat primary visual cortex. , 1999, Journal of neurophysiology.

[36]  Peter R Mouton,et al.  Empirical assessment of synapse numbers in primate neocortex , 1997, Journal of Neuroscience Methods.

[37]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[38]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[39]  J C Anderson,et al.  Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. , 1993, Cerebral cortex.

[40]  C. Beaulieu,et al.  Numerical data on neocortical neurons in adult rat, with special reference to the GABA population , 1993, Brain Research.

[41]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[42]  Adel K. Afifi,et al.  The Fine Structure of the Nervous System , 1991, Neurology.

[43]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[44]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[45]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[46]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[47]  H J Gundersen,et al.  The efficiency of systematic sampling in stereology and its prediction * , 1987, Journal of microscopy.

[48]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[49]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[50]  D. C. Sterio The unbiased estimation of number and sizes of arbitrary particles using the disector , 1984, Journal of microscopy.

[51]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[52]  M. Colonnier,et al.  The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat , 1983, The Journal of comparative neurology.

[53]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[54]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[55]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[56]  B. Cragg The density of synapses and neurones in the motor and visual areas of the cerebral cortex. , 1967, Journal of anatomy.

[57]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[58]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[59]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.