Shorter Compact Representations in Real Quadratic Fields

[1]  Alan K. Silvester Improving regulator verification and compact representations in real quadratic fields , 2013 .

[2]  Michael J. Jacobson,et al.  Improved Exponentiation and Key Agreement in the Infrastructure of a Real Quadratic Field , 2012, LATINCRYPT.

[3]  Gregory Neven,et al.  Progress in Cryptology – LATINCRYPT 2012 , 2012, Lecture Notes in Computer Science.

[4]  Laurent Imbert,et al.  Fast ideal cubing in imaginary quadratic number and function fields , 2010, Adv. Math. Commun..

[5]  Michael J. Jacobson,et al.  Solving the Pell Equation , 2008 .

[6]  W. Neville Holmes,et al.  Binary Arithmetic , 2007, Computer.

[7]  Johannes Buchmann,et al.  Binary Quadratic Forms: An Algorithmic Approach (Algorithms and Computation in Mathematics) , 2007 .

[8]  Laurent Imbert,et al.  Extended Double-Base Number System with Applications to Elliptic Curve Cryptography , 2006, INDOCRYPT.

[9]  Roberto Maria Avanzi,et al.  Extending Scalar Multiplication Using Double Bases , 2006, ASIACRYPT.

[10]  Kefei Chen,et al.  Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory and Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings , 2006, ASIACRYPT.

[11]  Tanja Lange,et al.  Progress in Cryptology - INDOCRYPT 2006, 7th International Conference on Cryptology in India, Kolkata, India, December 11-13, 2006, Proceedings , 2006, INDOCRYPT.

[12]  Michael J. Jacobson,et al.  An Improved Real-Quadratic-Field-Based Key Exchange Procedure , 2005, Journal of Cryptology.

[13]  Laurent Imbert,et al.  Efficient and Secure Elliptic Curve Point Multiplication Using Double-Base Chains , 2005, ASIACRYPT.

[14]  Alexander Maximov,et al.  Fast Computation of Large Distributions and Its Cryptographic Applications , 2005, ASIACRYPT.

[15]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[16]  Aggelos Kiayias,et al.  Polynomial Reconstruction Based Cryptography , 2001, Selected Areas in Cryptography.

[17]  Michael J. Jacobson The Efficiency and Security of a Real Quadratic Field Based-Key Exchange Protocol , 2001 .

[18]  Detlef Hühnlein,et al.  On the Implementation of Cryptosystems Based on Real Quadratic Number Fields , 2000, Selected Areas in Cryptography.

[19]  Graham A. Jullien,et al.  An Algorithm for Modular Exponentiation , 1998, Inf. Process. Lett..

[20]  H. C. Williams,et al.  Short Representation of Quadratic Integers , 1995 .

[21]  Jeffrey C. Lagarias,et al.  Succinct certificates for the solvability of binary quadratic Diophantine equations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).