3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

[1]  Silvio Savarese,et al.  Detecting and tracking people using an RGB-D camera via multiple detector fusion , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[2]  Armin B. Cremers,et al.  Adaptive Multi-cue 3D Tracking of Arbitrary Objects , 2012, DAGM/OAGM Symposium.

[3]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Shin Ishii,et al.  An occlusion-aware particle filter tracker to handle complex and persistent occlusions , 2016, Computer Vision and Image Understanding.

[5]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[6]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Jianxiong Xiao,et al.  Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jitendra Malik,et al.  Large displacement optical flow , 2009, CVPR.

[13]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[15]  Kai Oliver Arras,et al.  People tracking in RGB-D data with on-line boosted target models , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Antonis A. Argyros,et al.  Efficient model-based 3D tracking of hand articulations using Kinect , 2011, BMVC.

[17]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[18]  Bernard Ghanem,et al.  Multi-template Scale-Adaptive Kernelized Correlation Filters , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[19]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[20]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[21]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[22]  Majid Mirmehdi,et al.  Real-time RGB-D Tracking with Depth Scaling Kernelised Correlation Filters and Occlusion Handling , 2015, BMVC.

[23]  Changsheng Xu,et al.  Object Tracking by Occlusion Detection via Structured Sparse Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[24]  Chen Qian,et al.  Realtime and Robust Hand Tracking from Depth , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Qiang Ji,et al.  Simultaneous Clustering and Tracklet Linking for Multi-face Tracking in Videos , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Silvio Savarese,et al.  Monocular Multiview Object Tracking with 3D Aspect Parts , 2014, ECCV.

[30]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[31]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[32]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  Changsheng Xu,et al.  Robust Visual Tracking via Exclusive Context Modeling , 2016, IEEE Transactions on Cybernetics.

[34]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[35]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[36]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Changsheng Xu,et al.  Partial Occlusion Handling for Visual Tracking via Robust Part Matching , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Andrea Cavallaro,et al.  Accepted for Publication in Ieee Transactions on Image Processing Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation , 2022 .

[39]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[40]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).