Observability Analysis of IMU Intrinsic Parameters in Stereo Visual–Inertial Odometry

In this article, we present self-calibrated visual–inertial odometry (VIO) that estimates inertial measurement unit (IMU) intrinsic parameters (scale factor and misalignment) using a stereo camera without any calibration boards. Most of the visual–inertial navigation algorithms assume that the visual and inertial sensors are well-calibrated before operating. However, this could degrade the navigation performance due to unmodeled errors. Specifically, we employ an extended Kalman filter (EKF)-based pose estimator in which the filter state is augmented by the IMU intrinsic parameter to model the egomotion more precisely. Since raw IMU readings are transformed by the intrinsic parameter, these are key factors that determine the performance of the egomotion tracking. The main contribution of this article is an analytic observability analysis of the self-calibrated VIO that is a nonlinear time-varying system. We inspect the rank of the observability matrix formed by Lie derivatives of the nonlinear system. Our theoretical result reveals that the IMU intrinsic parameter is fully observable when all six axes of an IMU are excited. This is further confirmed by our simulation experiments by examining state uncertainties. Moreover, the real-world experiment using a publicly available and author-collected data set reveals that the pose tracking performance is improved by modeling IMU intrinsic parameters.

[1]  Shau-Shiun Jan,et al.  Observability Analysis and Performance Evaluation of EKF-Based Visual-Inertial Odometry With Online Intrinsic Camera Parameter Calibration , 2019, IEEE Sensors Journal.

[2]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[3]  Gaurav S. Sukhatme,et al.  Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration , 2011, Int. J. Robotics Res..

[4]  Anastasios I. Mourikis,et al.  High-fidelity sensor modeling and self-calibration in vision-aided inertial navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Anastasios I. Mourikis,et al.  Online temporal calibration for camera–IMU systems: Theory and algorithms , 2014, Int. J. Robotics Res..

[6]  Stergios I. Roumeliotis,et al.  SC-KF Mobile Robot Localization: A Stochastic Cloning Kalman Filter for Processing Relative-State Measurements , 2007, IEEE Transactions on Robotics.

[7]  Martin Brossard,et al.  Unscented Kalman Filtering on Lie Groups for Fusion of IMU and Monocular Vision , 2017 .

[8]  Chan Gook Park,et al.  Analysis of Geometric Effects on Integrated Inertial/Vision for Lunar Descent Navigation , 2016 .

[9]  Stergios I. Roumeliotis,et al.  IMU-RGBD camera 3D pose estimation and extrinsic calibration: Observability analysis and consistency improvement , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[11]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[13]  Roland Siegwart,et al.  Observability-Aware Self-Calibration of Visual and Inertial Sensors for Ego-Motion Estimation , 2019, IEEE Sensors Journal.

[14]  Agostino Martinelli,et al.  Closed-Form Solution of Visual-Inertial Structure from Motion , 2013, International Journal of Computer Vision.

[15]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[16]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[17]  Xiaoping Zhang,et al.  Online IMU Self-Calibration for Visual-Inertial Systems , 2019, Sensors.

[18]  Anastasios I. Mourikis,et al.  Vision-aided inertial navigation with rolling-shutter cameras , 2014, Int. J. Robotics Res..

[19]  Chan Gook Park,et al.  EKF-Based Visual Inertial Navigation Using Sliding Window Nonlinear Optimization , 2019, IEEE Transactions on Intelligent Transportation Systems.

[20]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[21]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[22]  Jörg Stückler,et al.  Direct visual-inertial odometry with stereo cameras , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[24]  I. Bar-Itzhack,et al.  Observability analysis of piece-wise constant systems. I. Theory , 1992 .

[25]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[26]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[27]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[28]  Kostas Daniilidis,et al.  PennCOSYVIO: A challenging Visual Inertial Odometry benchmark , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Roland Siegwart,et al.  Maximum Likelihood Identification of Inertial Sensor Noise Model Parameters , 2016, IEEE Sensors Journal.

[30]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  M. Shuster A survey of attitude representation , 1993 .

[32]  P. Groves Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems , 2007 .

[33]  Roland Siegwart,et al.  Visual-inertial self-calibration on informative motion segments , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Peter Händel,et al.  Calibration of an IMU-Camera Cluster Using Planar Mirror Reflection and Its Observability Analysis , 2015, IEEE Transactions on Instrumentation and Measurement.

[35]  Dimitrios G. Kottas,et al.  Camera-IMU-based localization: Observability analysis and consistency improvement , 2014, Int. J. Robotics Res..

[36]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.