Online control of simulated humanoids using particle belief propagation

We present a novel, general-purpose Model-Predictive Control (MPC) algorithm that we call Control Particle Belief Propagation (C-PBP). C-PBP combines multimodal, gradient-free sampling and a Markov Random Field factorization to effectively perform simultaneous path finding and smoothing in high-dimensional spaces. We demonstrate the method in online synthesis of interactive and physically valid humanoid movements, including balancing, recovery from both small and extreme disturbances, reaching, balancing on a ball, juggling a ball, and fully steerable locomotion in an environment with obstacles. Such a large repertoire of movements has not been demonstrated before at interactive frame rates, especially considering that all our movement emerges from simple cost functions. Furthermore, we abstain from using any precomputation to train a control policy offline, reference data such as motion capture clips, or state machines that break the movements down into more manageable subtasks. Operating under these conditions enables rapid and convenient iteration when designing the cost functions.

[1]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[2]  Richard A. Schmidt,et al.  Motor Learning and Performance , 1991 .

[3]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  William T. Freeman,et al.  Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[6]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[7]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[8]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[9]  R. Schmidt,et al.  Motor learning and performance: A situation-based learning approach, 4th ed. , 2008 .

[10]  Emanuel Todorov,et al.  General duality between optimal control and estimation , 2008, 2008 47th IEEE Conference on Decision and Control.

[11]  Richard A. Schmidt,et al.  Motor learning and performance : a situation-based learning approach , 2008 .

[12]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[13]  Kenneth Y. Goldberg,et al.  Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring Random Trees and backchaining , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[14]  J. Maciejowski,et al.  Sequential Monte Carlo for Model Predictive Control , 2009 .

[15]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[16]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[17]  Marc Toussaint,et al.  Robot trajectory optimization using approximate inference , 2009, ICML '09.

[18]  David A. McAllester,et al.  Particle Belief Propagation , 2009, AISTATS.

[19]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[20]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[21]  Yuval Tassa,et al.  Control-limited differential dynamic programming , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..

[23]  Igor S. Pandzic,et al.  State of the Art in Example‐Based Motion Synthesis for Virtual Characters in Interactive Applications , 2010, Comput. Graph. Forum.

[24]  C. K. Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[25]  Z. Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Trans. Graph..

[26]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[27]  Jan Hauth,et al.  PF-MPC: Particle filter-model predictive control , 2011, Syst. Control. Lett..

[28]  Sehoon Ha,et al.  Falling and landing motion control for character animation , 2012, ACM Trans. Graph..

[29]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Baining Guo,et al.  Terrain runner , 2012, ACM Trans. Graph..

[31]  Vicenç Gómez,et al.  Optimal control as a graphical model inference problem , 2009, Machine Learning.

[32]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[33]  Nicolas Pronost,et al.  Interactive Character Animation Using Simulated Physics: A State‐of‐the‐Art Review , 2012, Comput. Graph. Forum.

[34]  Michiel van de Panne,et al.  Flexible muscle-based locomotion for bipedal creatures , 2013, ACM Trans. Graph..

[35]  Wayne Luk,et al.  Parallelisation of Sequential Monte Carlo for real-time control in air traffic management , 2013, 52nd IEEE Conference on Decision and Control.

[36]  Jian-Jun Zhang,et al.  Adaptive motion synthesis for virtual characters: a survey , 2014, The Visual Computer.

[37]  Zoran Popovic,et al.  Generalizing locomotion style to new animals with inverse optimal regression , 2014, ACM Trans. Graph..

[38]  Yuval Tassa,et al.  Control-limited differential dynamic programming , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Eugene Fiume,et al.  Feedback control for rotational movements in feature space , 2014, Comput. Graph. Forum.

[40]  C. Karen Liu,et al.  Learning bicycle stunts , 2014, ACM Trans. Graph..

[41]  Jaakko Lehtinen,et al.  Online motion synthesis using sequential Monte Carlo , 2014, ACM Trans. Graph..

[42]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.