On PAC learning algorithms for rich Boolean function classes

We survey the fastest known algorithms for learning various expressive classes of Boolean functions in the Probably Approximately Correct (PAC) learning model.

[1]  David Haussler,et al.  Occam's Razor , 1987, Inf. Process. Lett..

[2]  Ryan O'Donnell,et al.  Learning Monotone Decision Trees in Polynomial Time , 2007, SIAM J. Comput..

[3]  S. Muroga,et al.  Theory of majority decision elements , 1961 .

[4]  R. Rivest Learning Decision Lists , 1987, Machine Learning.

[5]  Ryan O'Donnell,et al.  Extremal properties of polynomial threshold functions , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[6]  Nader H. Bshouty,et al.  On the Fourier spectrum of monotone functions , 1995, STOC '95.

[7]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[8]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[9]  Rocco A. Servedio,et al.  Learnability beyond AC0 , 2002, STOC '02.

[10]  Jeffrey C. Jackson,et al.  An efficient membership-query algorithm for learning DNF with respect to the uniform distribution , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[11]  Rocco A. Servedio,et al.  Learning DNF in time 2Õ(n1/3) , 2004, J. Comput. Syst. Sci..

[12]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[13]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[14]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[15]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[16]  Johan Håstad,et al.  On the Size of Weights for Threshold Gates , 1994, SIAM J. Discret. Math..

[17]  Kathie Cameron,et al.  Monotone path systems in simple regions , 1994, Comb..

[18]  Avrim Blum,et al.  On learning embedded symmetric concepts , 1993, COLT '93.

[19]  Nader H. Bshouty,et al.  On Learning width Two Branching Programs , 1998, Inf. Process. Lett..

[20]  Nader H. Bshouty,et al.  Exact learning via the Monotone theory , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[21]  Nader H. Bshouty A Subexponential Exact Learning Algorithm for DNF Using Equivalence Queries , 1996, Inf. Process. Lett..

[22]  Rocco A. Servedio,et al.  Learning intersections and thresholds of halfspaces , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[23]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[24]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, Comb..

[25]  Eyal Kushilevitz,et al.  Learning decision trees using the Fourier spectrum , 1991, STOC '91.

[26]  Avrim Blum Rank-r Decision Trees are a Subclass of r-Decision Lists , 1992, Inf. Process. Lett..

[27]  David Haussler,et al.  Learning decision trees from random examples , 1988, COLT '88.

[28]  Shai Ben-David,et al.  Learning with Restricted Focus of Attention , 1998, J. Comput. Syst. Sci..

[29]  Michael Kearns,et al.  Efficient noise-tolerant learning from statistical queries , 1993, STOC.

[30]  Michael Kharitonov,et al.  Cryptographic hardness of distribution-specific learning , 1993, STOC.

[31]  Ryan O'Donnell,et al.  New degree bounds for polynomial threshold functions , 2003, STOC '03.

[32]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[33]  Karsten A. Verbeurgt Learning DNF under the uniform distribution in quasi-polynomial time , 1990, COLT '90.

[34]  James Aspnes,et al.  The expressive power of voting polynomials , 1994, Comb..

[35]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[36]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[37]  Manfred K. Warmuth,et al.  Learning integer lattices , 1990, COLT '90.

[38]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[39]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[40]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[41]  Pavel Pudlák,et al.  Computing Boolean functions by polynomials and threshold circuits , 1998, computational complexity.

[42]  Nader H. Bshouty Exact Learning Boolean Function via the Monotone Theory , 1995, Inf. Comput..

[43]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[44]  Tatsuie Tsukiji,et al.  Learning DNF by approximating inclusion-exclusion formulae , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[45]  M. Saks Slicing the hypercube , 1993 .

[46]  Hans Ulrich Simon,et al.  On learning ring-sum-expansions , 1990, COLT '90.

[47]  J. C. Jackson Learning Functions Represented as Multiplicity Automata , 1997 .

[48]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[49]  Ryan O'Donnell,et al.  Extremal properties of polynomial threshold functions , 2008, J. Comput. Syst. Sci..

[50]  Adam R. Klivans,et al.  Learning DNF in time 2 Õ(n 1/3 ) . , 2001, STOC 2001.

[51]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.