Kinematic path planning for robots with holonomic and nonholonomic constraints

Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no—slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in—orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc.

[1]  J. Hollerbach,et al.  Programming and control of kinematically redundant manipulators , 1984, The 23rd IEEE Conference on Decision and Control.

[2]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[3]  John Baillieul,et al.  Resolution of Kinematic Redundancy using Optimization Techniques , 1988, 1988 American Control Conference.

[4]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[5]  S. Sastry,et al.  Steering nonholonomic systems using sinusoids , 1990, 29th IEEE Conference on Decision and Control.

[6]  C. Nelson Dorny,et al.  A Vector Space Approach to Models and Optimization , 1983 .

[7]  Alan A. Desrochers,et al.  Testbed for cooperative robotic manipulators , 1992 .

[8]  A.W. Divelbiss,et al.  A Perturbation Refinement Method for Nonholonomic Motion Planning , 1992, 1992 American Control Conference.

[9]  Leo Dorst,et al.  The geometrical representation of path planning problems , 1991, Robotics Auton. Syst..

[10]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[11]  John T. Wen,et al.  A global approach to path planning for redundant manipulators , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[12]  Christian Laugier,et al.  On line reactive planning for a nonholonomic mobile in a dynamic world , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[13]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[14]  J. Latombe,et al.  Numerical potential field techniques for robot path planning , 1991 .

[15]  John F. Canny,et al.  Using skeletons for nonholonomic path planning among obstacles , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[16]  Russell H. Taylor,et al.  Geometric issues in planning robot tasks , 1989 .

[17]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[18]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[19]  John F. Canny,et al.  Robust motion planning for mobile robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[20]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[21]  Miomir Vukobratovic,et al.  A dynamic approach to nominal trajectory synthesis for redundant manipulators , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  John M. Hollerbach,et al.  Local versus global torque optimization of redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[23]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[24]  John T. Wen,et al.  Trajectory tracking control of a car-trailer system , 1997, IEEE Trans. Control. Syst. Technol..

[25]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[26]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..

[27]  Peter Hilton,et al.  New Directions in Applied Mathematics , 1982 .

[28]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1987, IEEE J. Robotics Autom..

[29]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[30]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[31]  Steven Dubowsky,et al.  On the dynamics of manipulators in space using the virtual manipulator approach , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[32]  Eduardo Sontag Gradient techniques for systems with no drift: a classical idea revisited , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[33]  Giuseppe Oriolo,et al.  Free-joint manipulators: motion control under second-order nonholonomic constraints , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[34]  Tomás Lozano-Pérez,et al.  Task-level planning of pick-and-place robot motions , 1989, Computer.

[35]  Karim Ait-Abderrahim,et al.  Feedback stabilization of a nonholonomic wheeled mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[36]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[37]  Alan A. Desrochers Intelligent robotic systems for space exploration , 1992 .

[38]  A. Bloch,et al.  Controllability and stabilizability properties of a nonholonomic control system , 1990, 29th IEEE Conference on Decision and Control.