Impedance Control and Force Estimation of a Redundant Parallel Kinematic Manipulator

This paper presents impedance control through force estimation of a redundantly actuated Parallel Kinematic Manipulator. The impedance control is a model based control that sets a stiffness, damping and apparent inertia in the task space of the robot. The control is based on the feedback linearisation of the dynamics. The impedance control is achieved through an optimization promoting the even distribution of torques over actuators. Next, a force estimator is applied through an nonlinear disturbance observer. Finally, the estimated force is used in the impedance controller to set an apparent inertia of the moving platform of the robot. The approach shows a good response in low frequencies and good external force estimation required for impedance controlled tasks.

[1]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Amy J. Briggs An efficient algorithm for one-step planar compliant motion planning with uncertainty , 1992, Algorithmica.

[3]  Daniel Schütz,et al.  Robotic Systems for Handling and Assembly , 2011, Robotic Systems for Handling and Assembly.

[4]  Reza Haghighi,et al.  Nonlinear Disturbance Observer for Robot Manipulators in 3D Space , 2008, ICIRA.

[5]  Joris De Schutter,et al.  Specification of force-controlled actions in the "task frame formalism"-a synthesis , 1996, IEEE Trans. Robotics Autom..

[6]  Guanfeng Liu,et al.  Advantages and dynamics of parallel manipulators with redundant actuation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[7]  Moonhong Baeg,et al.  Intuitive peg-in-hole assembly strategy with a compliant manipulator , 2013, IEEE ISR 2013.

[8]  Sébastien Briot,et al.  Dynamic parameter identification of actuation redundant parallel robots: Application to the DualV , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[9]  P. M. George,et al.  Parallel Manipulators Applications—A Survey , 2012 .

[10]  Hamid D. Taghirad,et al.  Parallel Robots: Mechanics and Control , 2013 .

[11]  Septimiu E. Salcudean,et al.  A six degree-of-freedom, hydraulic, one person motion simulator , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Michael A. Peshkin,et al.  Programmed compliance for error corrective assembly , 1990, IEEE Trans. Robotics Autom..

[13]  Ole Madsen,et al.  Impedance Control of a Redundant Parallel Manipulator , 2017, ICINCO.

[14]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[15]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[16]  F. Pierrot Modelling and design issues of a 3-axis parallel machine-tool , 2002 .

[17]  Mahdi Tavakoli,et al.  Nonlinear Disturbance Observers: Design and Applications to Euler?Lagrange Systems , 2017, IEEE Control Systems.

[18]  Walter Schumacher,et al.  Redundant Parallel Kinematic Structures and Their Control , 2011, Robotic Systems for Handling and Assembly.

[19]  Aiguo Ming,et al.  Study on multiple degree-of-freedom positioning mechanism using wires. II: Development of a planar completely restrained positioning mechanism , 1994 .