The fractal brain: scale-invariance in structure and dynamics

Abstract The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.

[1]  Mohana Kuppuswamy Parthasarathy,et al.  Measuring the 1/f spatiotemporal amplitude spectrum of the DynTex database , 2021, Journal of Vision.

[2]  W. Singer Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge , 2021, Proceedings of the National Academy of Sciences.

[3]  Saumil S. Patel,et al.  Functional connectomics spanning multiple areas of mouse visual cortex , 2021, bioRxiv.

[4]  Z. Kuncic,et al.  Avalanches and edge-of-chaos learning in neuromorphic nanowire networks , 2021, Nature Communications.

[5]  C. Rodrigues,et al.  Memory in Ion Channel Kinetics , 2021, Acta Biotheoretica.

[6]  Douglas Zhou,et al.  Maximum Entropy Principle Underlies Wiring Length Distribution in Brain Networks. , 2021, Cerebral cortex.

[7]  J. Touboul,et al.  Is There Sufficient Evidence for Criticality in Cortical Systems? , 2021, eNeuro.

[8]  M. Pusch,et al.  The Joy of Markov Models—Channel Gating and Transport Cycling Made Easy , 2021, The Biophysicist.

[9]  Ola Huse Ramstad,et al.  Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation , 2021, Frontiers in Computational Neuroscience.

[10]  J. Dalrymple-Alford,et al.  How neurons exploit fractal geometry to optimize their network connectivity , 2021, Scientific Reports.

[11]  J. DeFelipe,et al.  Three-Dimensional Synaptic Organization of Layer III of the Human Temporal Neocortex , 2021, bioRxiv.

[12]  Vasile V Moca,et al.  Time-frequency super-resolution with superlets , 2021, Nature Communications.

[13]  Roxana Zeraati,et al.  Self-Organization Toward Criticality by Synaptic Plasticity , 2020, Frontiers in Physics.

[14]  Petr Znamenskiy,et al.  Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making , 2019, Neuron.

[15]  Stefano Diciotti,et al.  Fractal Analysis of MRI Data at 7 T: How Much Complex Is the Cerebral Cortex? , 2021, IEEE Access.

[16]  Casey M. Schneider-Mizell,et al.  Multiscale and multimodal reconstruction of cortical structure and function , 2020, bioRxiv.

[17]  Md. Kamrul Hassan,et al.  Similarity and self-similarity in random walk with fixed, random and shrinking steps , 2020, 2010.02579.

[18]  Ł. Machura,et al.  Differences in Gating Dynamics of BK Channels in Cellular and Mitochondrial Membranes from Human Glioblastoma Cells Unraveled by Short- and Long-Range Correlations Analysis , 2020, Cells.

[19]  K. Amunts,et al.  A cortex-like canonical circuit in the avian forebrain , 2020, Science.

[20]  Ralf Wessel,et al.  Stability of motor cortex network states during learning-associated neural reorganizations. , 2020, Journal of neurophysiology.

[21]  Navrag B. Singh,et al.  Assessing the Temporal Organization of Walking Variability: A Systematic Review and Consensus Guidelines on Detrended Fluctuation Analysis , 2020, Frontiers in Physiology.

[22]  G. Rees,et al.  The human motor cortex microcircuit: insights for neurodegenerative disease , 2020, Nature Reviews Neuroscience.

[23]  Feng Li,et al.  A connectome and analysis of the adult Drosophila central brain , 2020, bioRxiv.

[24]  Shota Shirai,et al.  Long-range temporal correlations in scale-free neuromorphic networks , 2020, Network Neuroscience.

[25]  Andrei Ciuparu,et al.  Soft++, a multi-parametric non-saturating non-linearity that improves convergence in deep neural architectures , 2020, Neurocomputing.

[26]  Ł. Machura,et al.  Multifractal Properties of BK Channel Currents in Human Glioblastoma Cells , 2020, The journal of physical chemistry. B.

[27]  Przemysław Borys Long term Hurst memory that does not die at long observation times—Deterministic map to describe ion channel activity , 2020 .

[28]  Richard F. Betzel,et al.  Linking Structure and Function in Macroscale Brain Networks , 2020, Trends in Cognitive Sciences.

[29]  A. J. Silva,et al.  On the validation of Newcomb-Benford law and Weibull distribution in neuromuscular transmission , 2020, 2002.01986.

[30]  Drew Friedmann,et al.  Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network , 2019, Proceedings of the National Academy of Sciences.

[31]  M. Wibral,et al.  Control of criticality and computation in spiking neuromorphic networks with plasticity , 2019, Nature Communications.

[32]  Matthew T. Kaufman,et al.  BRICseq Bridges Brain-wide Interregional Connectivity to Neural Activity and Gene Expression in Single Animals , 2018, Cell.

[33]  Ralf Wessel,et al.  Cortical Circuit Dynamics Are Homeostatically Tuned to Criticality In Vivo , 2019, Neuron.

[34]  Yun Wang,et al.  Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.

[35]  Viola Priesemann,et al.  A unified picture of neuronal avalanches arises from the understanding of sampling effects , 2019, bioRxiv.

[36]  L. Wong,et al.  Power law relations in earthquakes from microscopic to macroscopic scales , 2019, Scientific Reports.

[37]  A. Montakhab,et al.  Spike-Timing-Dependent Plasticity With Axonal Delay Tunes Networks of Izhikevich Neurons to the Edge of Synchronization Transition With Scale-Free Avalanches , 2019, Front. Syst. Neurosci..

[38]  James P. Gleeson,et al.  Emergence of power laws in noncritical neuronal systems , 2019, Physical review. E.

[39]  G. Didier,et al.  Multivariate scale-free temporal dynamics: From spectral (Fourier) to fractal (wavelet) analysis , 2019, Comptes Rendus Physique.

[40]  Nicholas A. Steinmetz,et al.  High-dimensional geometry of population responses in visual cortex , 2018, Nature.

[41]  Sonja Grün,et al.  Second type of criticality in the brain uncovers rich multiple-neuron dynamics , 2016, Proceedings of the National Academy of Sciences.

[42]  Mitchell G. Newberry,et al.  Self-Similar Processes Follow a Power Law in Discrete Logarithmic Space. , 2019, Physical review letters.

[43]  J. Wilting,et al.  25 years of criticality in neuroscience — established results, open controversies, novel concepts , 2019, Current Opinion in Neurobiology.

[44]  Jianyao Yao,et al.  A mechanical method of cerebral cortical folding development based on thermal expansion , 2019, Scientific Reports.

[45]  V. Borrell,et al.  Deconstructing cortical folding: genetic, cellular and mechanical determinants , 2019, Nature Reviews Neuroscience.

[46]  M. Brede,et al.  Taylor's power law captures the effects of environmental variability on community structure: An example from fishes in the North Sea , 2018, The Journal of animal ecology.

[47]  James K. Johnson,et al.  Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality , 2018, The Journal of Neuroscience.

[48]  M. Helmstaedter,et al.  Dense connectomic reconstruction in layer 4 of the somatosensory cortex , 2018, Science.

[49]  Willem M Otte,et al.  A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains , 2018, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[50]  Vladimir Miskovic,et al.  Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle , 2018, Human brain mapping.

[51]  Xiaoyin Chen,et al.  High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing , 2018, Cell.

[52]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[53]  Claus C. Hilgetag,et al.  Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex , 2017, NeuroImage.

[54]  Nergis Tomen,et al.  The Role of Criticality in Flexible Visual Information Processing , 2019, Springer Series on Bio- and Neurosystems.

[55]  Petr Znamenskiy,et al.  Segregated Subnetworks of Intracortical Projection Neurons in Primary Visual Cortex , 2018, Neuron.

[56]  Eric Shea-Brown,et al.  High-resolution data-driven model of the mouse connectome , 2018, bioRxiv.

[57]  Karl J. Friston,et al.  The Anatomy of Inference: Generative Models and Brain Structure , 2018, Front. Comput. Neurosci..

[58]  Johannes Zierenberg,et al.  Operating in a Reverberating Regime Enables Rapid Tuning of Network States to Task Requirements , 2018, Front. Syst. Neurosci..

[59]  Friedemann Pulvermüller,et al.  A Neurobiologically Constrained Cortex Model of Semantic Grounding With Spiking Neurons and Brain-Like Connectivity , 2018, Front. Comput. Neurosci..

[60]  Patrice Abry,et al.  Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics , 2018, Journal of Neuroscience Methods.

[61]  Justus M. Kebschull,et al.  Cellular barcoding: lineage tracing, screening and beyond , 2018, Nature Methods.

[62]  C. Kroenke,et al.  Mechanics of cortical folding: stress, growth and stability , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  E. Ruiz-Padial,et al.  Fractal dimension of EEG signals and heart dynamics in discrete emotional states , 2018, Biological Psychology.

[64]  HAMIDREZA NAMAZI,et al.  AGE-BASED VARIATIONS OF FRACTAL STRUCTURE OF EEG SIGNAL IN PATIENTS WITH EPILEPSY , 2018, Fractals.

[65]  W. Gui,et al.  Reduced structural complexity of the right cerebellar cortex in male children with autism spectrum disorder , 2018, PloS one.

[66]  Ludovico Minati,et al.  High-dimensional dynamics in a single-transistor oscillator containing Feynman-Sierpiński resonators: Effect of fractal depth and irregularity. , 2018, Chaos.

[67]  B. Bagchi Statistical Mechanics for Chemistry and Materials Science , 2018 .

[68]  M. Skorupa,et al.  Fractal form PEDOT/Au assemblies as thin-film neural interface materials , 2018, Biomedical materials.

[69]  S. Scarpetta,et al.  Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network. , 2018, Physical review. E.

[70]  Hongkui Zeng,et al.  Mesoscale connectomics , 2018, Current Opinion in Neurobiology.

[71]  Viola Priesemann,et al.  Can a time varying external drive give rise to apparent criticality in neural systems? , 2018, PLoS Comput. Biol..

[72]  K. Koschutnig,et al.  Age is reflected in the Fractal Dimensionality of MRI Diffusion Based Tractography , 2018, Scientific Reports.

[73]  Jafri Malin Abdullah,et al.  Working Memory From the Psychological and Neurosciences Perspectives: A Review , 2018, Front. Psychol..

[74]  Takashi Kamihigashi,et al.  Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review , 2018, Front. Phys..

[75]  D. C. Essen,et al.  The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles , 2018, Neuron.

[76]  M. A. Muñoz Colloquium: Criticality and dynamical scaling in living systems , 2017, Reviews of Modern Physics.

[77]  Jens Wilting,et al.  Inferring collective dynamical states from widely unobserved systems , 2016, Nature Communications.

[78]  J. Claussen,et al.  C G ] 1 9 O ct 2 00 4 1 / f α spectra in elementary cellular automata and fractal signals , 2018 .

[79]  Eliseo Ferrante,et al.  Scale invariance in natural and artificial collective systems: a review , 2017, Journal of The Royal Society Interface.

[80]  Michael Brecht,et al.  Motor cortex — to act or not to act? , 2017, Nature Reviews Neuroscience.

[81]  Danko Nikolić,et al.  Why deep neural nets cannot ever match biological intelligence and what to do about it? , 2017, Int. J. Autom. Comput..

[82]  Rodica Potolea,et al.  A Scaled-Correlation Based Approach for Defining and Analyzing Functional Networks , 2017, NFMCP@PKDD/ECML.

[83]  Peter Herman,et al.  Decomposing Multifractal Crossovers , 2017, Front. Physiol..

[84]  S. Funahashi Prefrontal Contribution to Decision-Making under Free-Choice Conditions , 2017, Front. Neurosci..

[85]  Danielle S. Bassett,et al.  Modeling and interpreting mesoscale network dynamics , 2017, NeuroImage.

[86]  Kimberlyn A Bailey,et al.  Decline of long-range temporal correlations in the human brain during sustained wakefulness , 2017, Scientific Reports.

[87]  Gabriele Arnulfo,et al.  Modular co-organization of functional connectivity and scale-free dynamics in the human brain , 2017, Network Neuroscience.

[88]  Jochen Triesch,et al.  Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network , 2017, PloS one.

[89]  Tim H. Murphy,et al.  Mesoscale brain explorer, a flexible python-based image analysis and visualization tool , 2017, Neurophotonics.

[90]  J. C. Echeverría,et al.  Relationship in Pacemaker Neurons Between the Long-Term Correlations of Membrane Voltage Fluctuations and the Corresponding Duration of the Inter-Spike Interval , 2017, The Journal of Membrane Biology.

[91]  B. T. Thomas Yeo,et al.  A Spotlight on Bridging Microscale and Macroscale Human Brain Architecture , 2017, Neuron.

[92]  M. A. Muñoz,et al.  Neutral Theory and Scale-Free Neural Dynamics , 2017, 1703.05079.

[93]  Sylvain Baillet,et al.  Magnetoencephalography for brain electrophysiology and imaging , 2017, Nature Neuroscience.

[94]  R. Kanzaki,et al.  Development of neural population activity toward self-organized criticality , 2017, Neuroscience.

[95]  Edward T. Bullmore,et al.  Micro-connectomics: probing the organization of neuronal networks at the cellular scale , 2017, Nature Reviews Neuroscience.

[96]  Edward T. Bullmore,et al.  Small-World Brain Networks Revisited , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[97]  J. Touboul,et al.  Power-law statistics and universal scaling in the absence of criticality. , 2015, Physical review. E.

[98]  Thomas R. Clandinin,et al.  The Influence of Wiring Economy on Nervous System Evolution , 2016, Current Biology.

[99]  Bahar Moezzi,et al.  Ion channel noise can explain firing correlation in auditory nerves , 2016, Journal of Computational Neuroscience.

[100]  Wolf Singer,et al.  Does the Cerebral Cortex Exploit High-Dimensional, Non-linear Dynamics for Information Processing? , 2016, Front. Comput. Neurosci..

[101]  Stephen C. Strother,et al.  The suppression of scale-free fMRI brain dynamics across three different sources of effort: aging, task novelty and task difficulty , 2016, Scientific Reports.

[102]  H. Kennedy,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[103]  Jacques Bourg,et al.  Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus , 2016, Nature Neuroscience.

[104]  D. V. van Essen,et al.  Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates , 2016, PLoS biology.

[105]  A. McCulloch,et al.  Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states. , 2016, Mathematical biosciences.

[106]  Elsa Arcaute,et al.  Multifractal methodology , 2016, 1606.02957.

[107]  F. Lombardi,et al.  Temporal correlations in neuronal avalanche occurrence , 2016, Scientific Reports.

[108]  Yundi Jiang,et al.  Long‐range correlation in the drought and flood index from 1470 to 2000 in eastern China , 2016 .

[109]  Peter Taylor,et al.  Modelling modal gating of ion channels with hierarchical Markov models , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[110]  J. Lefévre,et al.  On the growth and form of cortical convolutions , 2016, Nature Physics.

[111]  Richard F. Betzel,et al.  Modular Brain Networks. , 2016, Annual review of psychology.

[112]  L. Mogoantă,et al.  Fractal Analysis in Neurodegenerative Diseases. , 2024, Advances in neurobiology.

[113]  Guang H. Yue,et al.  Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases , 2016 .

[114]  Diego Guidolin,et al.  Does a Self-Similarity Logic Shape the Organization of the Nervous System? , 2016 .

[115]  V. Martínez‐Cerdeño,et al.  Dendrites in Autism Spectrum Disorders , 2016 .

[116]  M. A. Hofman,et al.  The Fractal Geometry of the Human Brain: An Evolutionary Perspective. , 2024, Advances in neurobiology.

[117]  Antonio Di Ieva,et al.  The Fractal Geometry of the Brain , 2016, Springer Series in Computational Neuroscience.

[118]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[119]  Woodrow L. Shew,et al.  State-dependent intrinsic predictability of cortical network dynamics , 2015, PLoS Comput. Biol..

[120]  T. Okabe Biophysical optimality of the golden angle in phyllotaxis , 2015, Scientific Reports.

[121]  G. Shepherd The Neuron Doctrine , 2015 .

[122]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[123]  Laurent Seuront,et al.  On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: A review, a critique and a few recommendations , 2015 .

[124]  Aravinthan D. T. Samuel,et al.  C. elegans locomotion: small circuits, complex functions , 2015, Current Opinion in Neurobiology.

[125]  E. Bullmore,et al.  Wiring cost and topological participation of the mouse brain connectome , 2015, Proceedings of the National Academy of Sciences.

[126]  Shane R. Crandall,et al.  A Corticothalamic Switch: Controlling the Thalamus with Dynamic Synapses , 2015, Neuron.

[127]  Lucio Biggiero,et al.  Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area , 2015 .

[128]  Gunnar Pruessner,et al.  25 Years of Self-organized Criticality: Concepts and Controversies , 2015, 1504.04991.

[129]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[130]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[131]  E. Koechlin,et al.  Executive control and decision-making in the prefrontal cortex , 2015, Current Opinion in Behavioral Sciences.

[132]  Jean M. Vettel,et al.  Controllability of structural brain networks , 2014, Nature Communications.

[133]  Peter Mukli,et al.  Multifractal formalism by enforcing the universal behavior of scaling functions , 2015 .

[134]  J. C. Phillips,et al.  Fractals and self-organized criticality in proteins , 2014 .

[135]  H. F. Song,et al.  Spatial embedding of structural similarity in the cerebral cortex , 2014, Proceedings of the National Academy of Sciences.

[136]  Alberto Seseña-Rubfiaro,et al.  Fractal-like correlations of the fluctuating inter-spike membrane potential of a Helix aspersa pacemaker neuron , 2014, Comput. Biol. Medicine.

[137]  Thilo Gross,et al.  Self-organized criticality as a fundamental property of neural systems , 2014, Front. Syst. Neurosci..

[138]  Partha P. Mitra,et al.  The Circuit Architecture of Whole Brains at the Mesoscopic Scale , 2014, Neuron.

[139]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[140]  Biyu J. He Scale-free brain activity: past, present, and future , 2014, Trends in Cognitive Sciences.

[141]  Nergis Tomen,et al.  Marginally subcritical dynamics explain enhanced stimulus discriminability under attention , 2014, Front. Syst. Neurosci..

[142]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[143]  D. Sigg,et al.  Modeling ion channels: Past, present, and future , 2014, The Journal of general physiology.

[144]  John M. Beggs,et al.  Quasicritical brain dynamics on a nonequilibrium Widom line. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[145]  Silvia Scarpetta,et al.  Alternation of up and down states at a dynamical phase-transition of a neural network with spatiotemporal attractors , 2014, Front. Syst. Neurosci..

[146]  D. Plenz,et al.  Criticality in neural systems , 2014 .

[147]  Bruce J. West,et al.  A Fractional Probability Calculus View of Allometry , 2014, Syst..

[148]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[149]  Dietmar Plenz,et al.  Criticality in Cortex: Neuronal Avalanches and Coherence Potentials , 2014 .

[150]  J. Michael Herrmann,et al.  Theoretical neuroscience of self‐organized criticality: from formal approaches to realistic models , 2014 .

[151]  D. Plenz,et al.  Neuronal Avalanches in the Human Brain , 2014 .

[152]  A. Daffertshofer,et al.  Persistent Fluctuations in Stride Intervals under Fractal Auditory Stimulation , 2014, PloS one.

[153]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[154]  Danko Nikolić,et al.  Membrane Resonance Enables Stable and Robust Gamma Oscillations , 2012, Cerebral cortex.

[155]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[156]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[157]  J. Ashburner,et al.  Age- and Sex-Related Variations in the Brain White Matter Fractal Dimension Throughout Adulthood: An MRI Study , 2014, Clinical Neuroradiology.

[158]  F. Scheer,et al.  The role of the circadian system in fractal neurophysiological control , 2013, Biological reviews of the Cambridge Philosophical Society.

[159]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[160]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[161]  Arvind Kumar,et al.  Challenges of understanding brain function by selective modulation of neuronal subpopulations , 2013, Trends in Neurosciences.

[162]  Bruno Mota,et al.  The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding , 2013, Front. Neuroanat..

[163]  M. A. Muñoz,et al.  Griffiths phases and the stretching of criticality in brain networks , 2013, Nature Communications.

[164]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations in Resting-State Alpha Oscillations Predict Human Timing-Error Dynamics , 2013, The Journal of Neuroscience.

[165]  Fabrizio Lombardi,et al.  Effects of Poisson noise in a IF model with STDP and spontaneous replay of periodic spatiotemporal patterns, in absence of cue stimulation , 2013, Biosyst..

[166]  M. Helmstaedter Cellular-resolution connectomics: challenges of dense neural circuit reconstruction , 2013, Nature Methods.

[167]  P. Osten,et al.  Mapping brain circuitry with a light microscope , 2013, Nature Methods.

[168]  R. Romo Conversion of sensory signals into perceptions, memories and decisions , 2013, Progress in Neurobiology.

[169]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[170]  K. Linkenkaer-Hansen,et al.  Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws , 2013, Proceedings of the National Academy of Sciences.

[171]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[172]  Maarten L. Wijnants,et al.  Does sample rate introduce an artifact in spectral analysis of continuous processes? , 2012, Front. Physio..

[173]  D. Plenz,et al.  Neuronal Avalanches in the Resting MEG of the Human Brain , 2012, The Journal of Neuroscience.

[174]  Edmund J Crampin,et al.  MCMC can detect nonidentifiable models. , 2012, Biophysical journal.

[175]  Hassana K. Oyibo,et al.  Sequencing the Connectome , 2012, PLoS biology.

[176]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[177]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences.

[178]  Hermann Cuntz,et al.  A scaling law derived from optimal dendritic wiring , 2012, Proceedings of the National Academy of Sciences.

[179]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[180]  D. Plenz Neuronal avalanches and coherence potentials , 2012 .

[181]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[182]  Z. Grzywna,et al.  On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory , 2012, European Biophysics Journal.

[183]  Bruno Mota,et al.  How the Cortex Gets Its Folds: An Inside-Out, Connectivity-Driven Model for the Scaling of Mammalian Cortical Folding , 2012, Front. Neuroanat..

[184]  Karla L. Miller,et al.  Diffusion tractography of post-mortem human brains: Optimization and comparison of spin echo and steady-state free precession techniques , 2012, NeuroImage.

[185]  Woodrow L. Shew,et al.  Maximal Variability of Phase Synchrony in Cortical Networks with Neuronal Avalanches , 2012, The Journal of Neuroscience.

[186]  C. Stevens Brain Organization: Wiring Economy Works for the Large and Small , 2012, Current Biology.

[187]  S. Huettel,et al.  The functional neuroanatomy of decision making: Prefrontal control of thought and action , 2012, Brain Research.

[188]  Pablo Balenzuela,et al.  Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis , 2012, Front. Physio..

[189]  Edward T. Bullmore,et al.  Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks , 2011, PLoS Comput. Biol..

[190]  Prasanta Sahoo,et al.  ANN modelling of fractal dimension in machining , 2012 .

[191]  S. Herculano‐Houzel Neuronal scaling rules for primate brains: the primate advantage. , 2012, Progress in brain research.

[192]  M. Asada,et al.  Information processing in echo state networks at the edge of chaos , 2012, Theory in Biosciences.

[193]  J. Nassi,et al.  Segregation of feedforward and feedback projections in mouse visual cortex , 2011, The Journal of comparative neurology.

[194]  Shan Yu,et al.  Higher-Order Interactions Characterized in Cortical Activity , 2011, The Journal of Neuroscience.

[195]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[196]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[197]  A. Lesne,et al.  Scale Invariance: From Phase Transitions to Turbulence , 2011 .

[198]  Ashish Raj,et al.  The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain , 2011, PloS one.

[199]  C. Broeckhoven,et al.  Fractal analysis of amyloid plaques in Alzheimer's disease patients and mouse models , 2011, Neurobiology of Aging.

[200]  Sebastian Wallot,et al.  Effects of Accuracy Feedback on Fractal Characteristics of Time Estimation , 2011, Front. Integr. Neurosci..

[201]  Andreas Klaus,et al.  Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches , 2011, PloS one.

[202]  M. Walton,et al.  Decision Making and Reward in Frontal Cortex , 2011, Behavioral neuroscience.

[203]  M. Gazzaniga,et al.  Understanding complexity in the human brain , 2011, Trends in Cognitive Sciences.

[204]  Edmund J Crampin,et al.  MCMC estimation of Markov models for ion channels. , 2011, Biophysical journal.

[205]  B. Weiss,et al.  Comparison of fractal and power spectral EEG features: Effects of topography and sleep stages , 2011, Brain Research Bulletin.

[206]  C. Westin,et al.  An introduction to diffusion tensor image analysis. , 2011, Neurosurgery clinics of North America.

[207]  Damian G. Stephen,et al.  Fractal fluctuations in gaze speed visual search , 2011, Attention, perception & psychophysics.

[208]  G. Glover Overview of functional magnetic resonance imaging. , 2011, Neurosurgery clinics of North America.

[209]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[210]  Danko Nikolić,et al.  Timescales of Multineuronal Activity Patterns Reflect Temporal Structure of Visual Stimuli , 2011, PloS one.

[211]  Kang-Hyun Jo,et al.  Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence , 2008, Lecture Notes in Computer Science.

[212]  James A. Dixon,et al.  Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors , 2011 .

[213]  Herbert F. Jelinek,et al.  Reviewing lacunarity analysis and classification of microglia in neuroscience , 2011 .

[214]  Florentin Wörgötter,et al.  Self-Organized Criticality in Developing Neuronal Networks , 2010, PLoS Comput. Biol..

[215]  J. Kaas,et al.  Connectivity-driven white matter scaling and folding in primate cerebral cortex , 2010, Proceedings of the National Academy of Sciences.

[216]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[217]  Zhao De-Jiang,et al.  Effects of fractal gating of potassium channels on neuronal behaviours , 2010 .

[218]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[219]  Luc Berthouze,et al.  Human EEG shows long-range temporal correlations of oscillation amplitude in Theta, Alpha and Beta bands across a wide age range , 2010, Clinical Neurophysiology.

[220]  Christoph Kayser,et al.  The Multisensory Nature of Unisensory Cortices: A Puzzle Continued , 2010, Neuron.

[221]  Jacobus F. A. Jansen,et al.  The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures , 2010, NeuroImage.

[222]  Jonathan K. W. Chui,et al.  Apparent fractal distribution of open durations in cyclodextrin-based ion channels. , 2010, Chemical communications.

[223]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[224]  Christopher T. Kello,et al.  Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.

[225]  Simon W. Moore,et al.  Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits , 2010, PLoS Comput. Biol..

[226]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[227]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[228]  Micah M. Murray,et al.  The Behavioral Relevance of Multisensory Neural Response Interactions , 2009, Frontiers in neuroscience.

[229]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[230]  D. Sornette,et al.  Epileptic seizures: Quakes of the brain? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[231]  B. Weiss,et al.  Spatio-temporal analysis of monofractal and multifractal properties of the human sleep EEG , 2009, Journal of Neuroscience Methods.

[232]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[233]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[234]  Gordon Pipa,et al.  SORN: A Self-Organizing Recurrent Neural Network , 2009, Front. Comput. Neurosci..

[235]  J. Harte,et al.  Biodiversity scales from plots to biomes with a universal species-area curve. , 2009, Ecology letters.

[236]  Dmitri B Chklovskii,et al.  Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors , 2009, Proceedings of the National Academy of Sciences.

[237]  Danko Nikolic,et al.  Model this! Seven empirical phenomena missing in the models of cortical oscillatory dynamics , 2009, 2009 International Joint Conference on Neural Networks.

[238]  P. Katsaloulis,et al.  Fractal dimension and lacunarity of tractography images of the human brain , 2009 .

[239]  Takeshi Kaneko,et al.  Recurrent Infomax Generates Cell Assemblies, Neuronal Avalanches, and Simple Cell-Like Selectivity , 2009, Neural Computation.

[240]  W. Singer,et al.  Neural Synchrony in Cortical Networks: History, Concept and Current Status , 2009, Front. Integr. Neurosci..

[241]  Leonard Wade,et al.  Fractal analysis on root systems of rice plants in response to drought stress , 2009 .

[242]  R. Thatcher,et al.  Self‐organized criticality and the development of EEG phase reset , 2009, Human brain mapping.

[243]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[244]  Luciano Pietronero,et al.  Absence of self-averaging and of homogeneity in the large-scale galaxy distribution , 2008, 0805.1132.

[245]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[246]  O. Mărgăritescu,et al.  Fractal analysis of astrocytes in stroke and dementia. , 2009, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[247]  Michael Creutz,et al.  Self-organized Criticality and Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[248]  F. Scheer,et al.  The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats. , 2008, Cardiovascular research.

[249]  J. Kaas,et al.  The basic nonuniformity of the cerebral cortex , 2008, Proceedings of the National Academy of Sciences.

[250]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[251]  J. Palva,et al.  Very Slow EEG Fluctuations Predict the Dynamics of Stimulus Detection and Oscillation Amplitudes in Humans , 2008, The Journal of Neuroscience.

[252]  Zhuo Yang,et al.  Long-range correlation of renal sympathetic nerve activity in both conscious and anesthetized rats , 2008, Journal of Neuroscience Methods.

[253]  Danko Nikolić,et al.  Properties of multivariate data investigated by fractal dimensionality , 2008, Journal of Neuroscience Methods.

[254]  W. Singer,et al.  Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images. , 2008, Journal of neurophysiology.

[255]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[256]  Stuart A Kauffman,et al.  Maximum power efficiency and criticality in random Boolean networks. , 2008, Physical review letters.

[257]  J. Toševski,et al.  Fractal analysis of dendritic arborization patterns of pyramidal neurons in human basolateral amygdala , 2008 .

[258]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[259]  Ilya Shmulevich,et al.  Critical networks exhibit maximal information diversity in structure-dynamics relationships. , 2008, Physical review letters.

[260]  Jason Lloyd-Price,et al.  Mutual information in random Boolean models of regulatory networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[261]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[262]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[263]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[264]  F. Scheer,et al.  The suprachiasmatic nucleus functions beyond circadian rhythm generation , 2007, Neuroscience.

[265]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[266]  Pasko Rakic,et al.  The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering , 2007, Brain Research Reviews.

[267]  Gerhard Werner,et al.  Metastability, criticality and phase transitions in brain and its models , 2007, Biosyst..

[268]  Agatha D. Lee,et al.  Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. , 2007, Cerebral cortex.

[269]  Jeffrey M. Hausdorff Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. , 2007, Human movement science.

[270]  Thomas G Maris,et al.  Fractal dimension as an index of brain cortical changes throughout life. , 2007, In vivo.

[271]  A. A. Grinevich,et al.  Multifractal analysis of K+ channel activity , 2007, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[272]  K. Newell,et al.  Walking speed influences on gait cycle variability. , 2007, Gait & posture.

[273]  P. Gifani,et al.  Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification , 2007, J. Frankl. Inst..

[274]  Keith Stowe,et al.  An Introduction to Thermodynamics and Statistical Mechanics , 2007 .

[275]  Robert A. Legenstein,et al.  2007 Special Issue: Edge of chaos and prediction of computational performance for neural circuit models , 2007 .

[276]  Cristina Savin,et al.  Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. , 2007, Journal of neurophysiology.

[277]  J. B. Stankovic,et al.  FRACTAL ANALYSIS OF DENDRITIC ARBORISATION PATTERNS OF STALKED AND ISLET NEURONS IN SUBSTANTIA GELATINOSA OF DIFFERENT SPECIES , 2007 .

[278]  J. Kaas,et al.  Cellular scaling rules for primate brains , 2007, Proceedings of the National Academy of Sciences.

[279]  P. Maldonado,et al.  Neuronal activity in the primary visual cortex of the cat freely viewing natural images , 2007, Neuroscience.

[280]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[281]  Petter Holme,et al.  Radial structure of the Internet , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[282]  A. Clauset,et al.  On the Frequency of Severe Terrorist Events , 2006, physics/0606007.

[283]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[284]  Thomas Hofmann,et al.  Temporal dynamics of information content carried by neurons in the primary visual cortex , 2007 .

[285]  Marcus Kaiser,et al.  Clustered organization of cortical connectivity , 2007, Neuroinformatics.

[286]  Wenyan Liu,et al.  Fractal analysis in normal EEG and epileptic EEG of rats , 2007 .

[287]  A. Barab Deterministic scale-free networks , 2007 .

[288]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[289]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[290]  Danko Nikolic,et al.  Temporal dynamics of information content carried by neurons in the primary visual cortex , 2006, NIPS.

[291]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[292]  D. Plenz,et al.  Inverted-U Profile of Dopamine–NMDA-Mediated Spontaneous Avalanche Recurrence in Superficial Layers of Rat Prefrontal Cortex , 2006, The Journal of Neuroscience.

[293]  K. Newell,et al.  Long range correlations in the stride interval of running. , 2006, Gait & posture.

[294]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[295]  Sampsa Vanhatalo,et al.  Fine spatiotemporal structure of phase in human intracranial EEG , 2006, Clinical Neurophysiology.

[296]  D. Dimiduk,et al.  Scale-Free Intermittent Flow in Crystal Plasticity , 2006, Science.

[297]  M. Glickstein Golgi and Cajal: The neuron doctrine and the 100th anniversary of the 1906 Nobel Prize , 2006, Current Biology.

[298]  Jing Z. Liu,et al.  A three-dimensional fractal analysis method for quantifying white matter structure in human brain , 2006, Journal of Neuroscience Methods.

[299]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[300]  L. de Arcangelis,et al.  Self-organized criticality model for brain plasticity. , 2006, Physical review letters.

[301]  C. Koch,et al.  The Continuous Wagon Wheel Illusion Is Associated with Changes in Electroencephalogram Power at ∼13 Hz , 2006, The Journal of Neuroscience.

[302]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[303]  Iosif Ignat,et al.  Heterogeneous networks of spiking neurons: Self-sustained activity and excitability , 2006 .

[304]  G. Buzsáki Rhythms of the brain , 2006 .

[305]  Simon M. Kaplan,et al.  Scale-Free Nature of Java Software Package, Class and Method Collaboration Graphs , 2006 .

[306]  A. N. Mamelak,et al.  Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans , 2005, Neuroscience.

[307]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[308]  Patrick D. Shipman,et al.  Polygonal planforms and phyllotaxis on plants. , 2005, Journal of theoretical biology.

[309]  Gordon Pipa,et al.  Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits , 2005, ICANN.

[310]  Djordje Stratimirović,et al.  Detecting Long‐Range Correlations in Time Series of Dorsal Horn Neuron Discharges , 2005, Annals of the New York Academy of Sciences.

[311]  Walter J. Freeman,et al.  A field-theoretic approach to understanding scale-free neocortical dynamics , 2005, Biological Cybernetics.

[312]  James Noble,et al.  Scale-free geometry in OO programs , 2005, CACM.

[313]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[314]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[315]  H. Markram,et al.  The neocortical microcircuit as a tabula rasa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[316]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[317]  D. W. Wheeler,et al.  Coherence, Memory and Conditioning : A Modern Viewpoint , 2005 .

[318]  Sang-Hoon Kim,et al.  Fractal dimensions of a green broccoli and a white cauliflower , 2004, cond-mat/0411597.

[319]  In-Young Kim,et al.  Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis. , 2004, Medical engineering & physics.

[320]  Yoshiharu Yonekura,et al.  Quantitative evaluation of age-related white matter microstructural changes on MRI by multifractal analysis , 2004, Journal of the Neurological Sciences.

[321]  Feng Qin,et al.  Model-based fitting of single-channel dwell-time distributions. , 2004, Biophysical journal.

[322]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[323]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[324]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. , 2004, Journal of neurophysiology.

[325]  Raul Cristian Muresan,et al.  The coherence theory: simple attentional modulation effects , 2004, Neurocomputing.

[326]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[327]  H Eugene Stanley,et al.  Non-random fluctuations and multi-scale dynamics regulation of human activity. , 2004, Physica A.

[328]  Jeffrey M. Hausdorff,et al.  Quantifying Fractal Dynamics of Human Respiration: Age and Gender Effects , 2002, Annals of Biomedical Engineering.

[329]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[330]  S. Cavalcanti,et al.  Deterministic Model of Ion Channel Flipping with Fractal Scaling of Kinetic Rates , 1999, Annals of Biomedical Engineering.

[331]  K. L. Nielsen,et al.  Fractal geometry of root systems: Field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes , 1999, Plant and Soil.

[332]  A. A. Verveen,et al.  Fluctuations in membrane potential of axons and the problem of coding , 1965, Kybernetik.

[333]  David Storch,et al.  Power‐law species–area relationships and self‐similar species distributions within finite areas , 2004 .

[334]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[335]  Jing Z. Liu,et al.  Fractal dimension in human cerebellum measured by magnetic resonance imaging. , 2003, Biophysical journal.

[336]  Kate E. Jones,et al.  Body mass of late Quaternary mammals , 2003 .

[337]  Dorothee P. Auer,et al.  Is the brain cortex a fractal? , 2003, NeuroImage.

[338]  N. Grzywacz,et al.  Power spectra and distribution of contrasts of natural images from different habitats , 2003, Vision Research.

[339]  W. Freeman,et al.  Aperiodic phase re‐setting in scalp EEG of beta–gamma oscillations by state transitions at alpha–theta rates , 2003, Human brain mapping.

[340]  S. Datta Fractal structure of the Horsehead nebula (B 33) , 2003 .

[341]  P. F. Meier,et al.  Dimensional complexity and spectral properties of the human sleep EEG , 2003, Clinical Neurophysiology.

[342]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[343]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[344]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[345]  Madalena Costa,et al.  Multiscale entropy analysis of complex physiologic time series. , 2002, Physical review letters.

[346]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. , 2002, Journal of neurophysiology.

[347]  Erhard Bieberich,et al.  Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain. , 2002, Bio Systems.

[348]  James H Brown,et al.  The fractal nature of nature: power laws, ecological complexity and biodiversity. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[349]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[350]  Dietmar Plenz,et al.  Preparation and Maintenance of Organotypic Cultures for Multi‐Electrode Array Recordings , 2002, Current protocols in neuroscience.

[351]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[352]  S Gaillard,et al.  Identification of living oligodendrocyte developmental stages by fractal analysis of cell morphology , 2001, Journal of neuroscience research.

[353]  L S Liebovitch,et al.  Fractal methods to analyze ion channel kinetics. , 2001, Methods.

[354]  A. Toga,et al.  Mapping cortical asymmetry and complexity patterns in normal children , 2001, Psychiatry Research: Neuroimaging.

[355]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[356]  D. Harte Multifractals: Theory and Applications , 2001 .

[357]  T. Gisiger Scale invariance in biology: coincidence or footprint of a universal mechanism? , 2001, Biological reviews of the Cambridge Philosophical Society.

[358]  P. Larsen,et al.  Long-term correlations in the spike trains of medullary sympathetic neurons. , 2001, Journal of neurophysiology.

[359]  S. Strogatz Exploring complex networks , 2001, Nature.

[360]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[361]  D. Gilden Cognitive emissions of 1/f noise. , 2001, Psychological review.

[362]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[363]  Dirk Stroobandt,et al.  The interpretation and application of Rent's rule , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[364]  L S Liebovitch,et al.  Hurst analysis applied to the study of single calcium-activated potassium channel kinetics. , 2000, Journal of theoretical biology.

[365]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[366]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[367]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[368]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[369]  W. Freeman,et al.  Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands , 2000, Journal of Neuroscience Methods.

[370]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[371]  M P Young,et al.  Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[372]  Z. Siwy,et al.  Statistical analysis of ionic current fluctuations in membrane channels. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[373]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[374]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[375]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[376]  T. Takeda,et al.  Fractal dimensions in the occurrence of miniature end-plate potential in a vertebrate neuromuscular junction , 1999, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[377]  James H. Brown,et al.  The fourth dimension of life: fractal geometry and allometric scaling of organisms. , 1999, Science.

[378]  L. Liebovitch,et al.  Fractal ion-channel behavior generates fractal firing patterns in neuronal models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[379]  O. Aslanidi,et al.  Non-Markovian Gating of Ca2+-Activated K+ Channels in Cultured Kidney Cells Vero. Rescaled Range Analysis , 1999, Journal of biological physics.

[380]  D. Turcotte,et al.  Fractality and Self-Organized Criticality of Wars , 1998 .

[381]  D. Turcotte,et al.  Forest fires: An example of self-organized critical behavior , 1998, Science.

[382]  R. Svensson,et al.  Self-Similar Temporal Behavior of Gamma-Ray Bursts , 1998, astro-ph/9807139.

[383]  Zbigniew J. Grzywna,et al.  NON-MARKOVIAN CHARACTER OF IONIC CURRENT FLUCTUATIONS IN MEMBRANE CHANNELS , 1998 .

[384]  Julián J. González,et al.  Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages , 1998, Neuroscience Letters.

[385]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[386]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[387]  A. Eshel,et al.  On the fractal dimensions of a root system , 1998 .

[388]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[389]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[390]  A Aertsen,et al.  Propagation of synchronous spiking activity in feedforward neural networks , 1996, Journal of Physiology-Paris.

[391]  D. Plenz,et al.  Generation of high-frequency oscillations in local circuits of rat somatosensory cortex cultures. , 1996, Journal of neurophysiology.

[392]  D R Fish,et al.  Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. , 1996, Cerebral cortex.

[393]  W. B. Marks,et al.  Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals , 1996, Journal of Neuroscience Methods.

[394]  M. L. Martins,et al.  Fractal patterns for dendrites and axon terminals , 1996 .

[395]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[396]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[397]  R. D. Campbell,et al.  Describing the shapes of fern leaves: A fractal geometrical approach , 1996 .

[398]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[399]  H. E. Stanley,et al.  Determination of fractal dimension of physiologically characterized neurons in two and three dimensions , 1995, Journal of Neuroscience Methods.

[400]  D R Fish,et al.  Fractal description of cerebral cortical patterns in frontal lobe epilepsy. , 1995, European neurology.

[401]  Jeffrey M. Hausdorff,et al.  Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. , 1995, Journal of applied physiology.

[402]  P. Grigolini,et al.  Fractal properties of ion channels and diffusion. , 1994, Mathematical biosciences.

[403]  R. Murray,et al.  Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients , 1994, Psychological Medicine.

[404]  Michael Creutz,et al.  Fractals and Self-Organized Criticality , 1994 .

[405]  Albert Y. Zomaya,et al.  Toward generating neural network structures for function approximation , 1994, Neural Networks.

[406]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[407]  Sergey V. Buldyrev,et al.  Long-range power-law correlations in condensed matter physics and biophysics , 1993 .

[408]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[409]  A.B. Kahng,et al.  On the intrinsic Rent parameter and spectra-based partitioning methodologies , 1992, Proceedings EURO-DAC '92: European Design Automation Conference.

[410]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[411]  Toshiaki Takeda,et al.  Fractal dimension of dendritic tree of cerebellar Purkinje cell during onto- and phylogenetic development , 1992, Neuroscience Research.

[412]  D. Tolhurst,et al.  Amplitude spectra of natural images. , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[413]  E. Lu,et al.  Avalanches and the Distribution of Solar Flares , 1991 .

[414]  Daniel J. Valentino,et al.  Measurement of fractal dimension using 3-D technique , 1991, Medical Imaging.

[415]  Mitsuhiro Shishikura The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets , 1991, math/9201282.

[416]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[417]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[418]  M. Diamond,et al.  Demonstration of discrete place‐defined columns—segregates—in the cat SI , 1990, The Journal of comparative neurology.

[419]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[420]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[421]  F G Ball,et al.  Markov, fractal, diffusion, and related models of ion channel gating. A comparison with experimental data from two ion channels. , 1989, Biophysical journal.

[422]  P. Bak,et al.  Earthquakes as a self‐organized critical phenomenon , 1989 .

[423]  T. Hwa,et al.  Fractals and self-organized criticality in dissipative dynamics , 1989 .

[424]  V. Gupta,et al.  Statistical self-similarity in river networks parameterized by elevation , 1989 .

[425]  W. B. Marks,et al.  A fractal analysis of cell images , 1989, Journal of Neuroscience Methods.

[426]  K L Magleby,et al.  Fractal models, Markov models, and channel kinetics. , 1989, Biophysical journal.

[427]  L. Liebovitch Testing fractal and Markov models of ion channel kinetics. , 1989, Biophysical journal.

[428]  S. Majumdar,et al.  The fractal dimension of cerebral surfaces using magnetic resonance images , 1988 .

[429]  K L Magleby,et al.  Fractal models are inadequate for the kinetics of four different ion channels. , 1988, Biophysical journal.

[430]  R Horn,et al.  Statistical discrimination of fractal and Markov models of single-channel gating. , 1988, Biophysical journal.

[431]  A. S. French,et al.  Fractal and Markov behavior in ion channel kinetics. , 1988, Canadian journal of physiology and pharmacology.

[432]  E. Salpeter,et al.  Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[433]  S. Haber Tracing intrinsic fiber connections in postmortem human brain with WGA-HRP , 1988, Journal of Neuroscience Methods.

[434]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[435]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[436]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[437]  L S Liebovitch,et al.  Fractal model of ion-channel kinetics. , 1987, Biochimica et biophysica acta.

[438]  Leo P. Kadanoff,et al.  Fractals: Where's the Physics? , 1986 .

[439]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[440]  Toshimitsu Musha,et al.  1/f Fluctuations in the Spontaneous Spike Discharge Intervals of a Giant Snail Neuron , 1983, IEEE Transactions on Biomedical Engineering.

[441]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[442]  J. David Singer,et al.  Resort to Arms: International and Civil Wars, 1816-1980 , 1982 .

[443]  W. Press Flicker noises in astronomy and elsewhere. , 1978 .

[444]  R. Voss,et al.  ’’1/f noise’’ in music: Music from 1/f noise , 1978 .

[445]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[446]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[447]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[448]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[449]  Clare Porac,et al.  The fading of stabilized images: Eye movements and information processing , 1974 .

[450]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[451]  E. Fluur Oculomotor micro-oscillations and the speed of the slow phase of nystagmus , 1970, The Journal of Laryngology & Otology.

[452]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[453]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[454]  L. R. Taylor,et al.  Aggregation, Variance and the Mean , 1961, Nature.

[455]  L A RIGGS,et al.  Visual effects of varying the extent of compensation for eye movements. , 1959, Journal of the Optical Society of America.

[456]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[457]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[458]  W. Maass,et al.  What makes a dynamical system computationally powerful ? , 2022 .