Algorithms for the maximum satisfiability problem

Old and new algorithms for the Maximum Satisfiability problem are studied. We first summarize the different heuristics previously proposed, i.e., the approximation algorithms of Johnson and of Lieberherr for the general Maximum Satisfiability problem, and the heuristics of Lieberherr and Specker, Poljak and Turzik for the Maximum 2-Satisfiability problem. We then consider two recent local search algorithmic schemes, the Simulated Annealing method of Kirkpatrick, Gelatt and Vecchi and the Steepest Ascent Mildest Descent method, and adapt them to the Maximum Satisfiability problem. The resulting algorithms, which avoid being blocked as soon as a local optimum has been found, are shown empirically to be more efficient than the heuristics previously proposed in the literature.ZusammenfassungEs werden bekannte und neue Algorithmen für das maximale Erfüllbarkeitsproblem untersucht. Zunächst geben wir eine Übersicht über verschiedene bisher vorgeschlagene Heuristiken wie z.B. die Approximationsalgorithmen von Johnson und von Lieberherr für das allgemeine maximale Erfüllbarkeitsproblem und die Heuristiken von Lieberherr und Specker, sowie von Poljak und Turzik für das maximale 2-Erfüllbarkeitsproblem. Sodann beachten wir zwei neuere lokale Suchverfahren, wie die Simulated Annealing Methode von Kirkpatrick, Gelatt und Vecchi sowie die Methods des steilsten Anstieges und flachsten Abstieges und adaptieren diese Verfahren für das maximale Erfüllbarkeitsproblem. Es zeigt sich, daß diese Verfahren, die nicht in einem lokalen Optimum stehen bleiben, empirisch effizienter sind als die bisher in der Literatur vorgeschlagenen Heuristiken.

[1]  Pierre Hansen,et al.  A linear expected-time algorithm for deriving all logical conclusions implied by a set of boolean inequalities , 1986, Math. Program..

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  J. K. Lowe,et al.  Some results and experiments in programming techniques for propositional logic , 1986, Comput. Oper. Res..

[4]  Walton A. Perkins,et al.  Checking an Expert Systems Knowledge Base for Consistency and Completeness , 1985, IJCAI.

[5]  Shuji Doshita,et al.  Resolution Deduction to Detect Satisfiability For Another Class Including Non-Horn Sentences In Propositional Logic , 1986, Inf. Process. Lett..

[6]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[7]  C. S. Edwards Some Extremal Properties of Bipartite Subgraphs , 1973, Canadian Journal of Mathematics.

[8]  Maurizio Martelli,et al.  Integrity Constraints for Logic Databases , 1985, J. Log. Program..

[9]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[10]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[11]  Vikraman Arvind,et al.  An O(n²) Algorithm for the Satisfiability Problem of a Subset of Propositional Sentences in CNF That Includes All Horn Sentences , 1987, Inf. Process. Lett..

[12]  Shuji Doshita,et al.  The Satisfiability Problem for a Class Consisting of Horn Sentences and Some Non-Horn Sentences in Proportional Logic , 1983, Inf. Control..

[13]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[16]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[17]  John N. Hooker,et al.  Input Proofs and Rank One Cutting Planes , 1989, INFORMS J. Comput..

[18]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[19]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[20]  S. Vajda,et al.  BOOLEAN METHODS IN OPERATIONS RESEARCH AND RELATED AREAS , 1969 .

[21]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, Symposium on the Theory of Computing.

[22]  P. Hansen Les Procedures D’exploration et D’optimisation par Separation Et Evaluation , 1975 .

[23]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[24]  S. Poljak,et al.  A Polynomial Algorithm for Constructing a Large Bipartite Subgraph, with an Application to a Satisfiability Problem , 1982, Canadian Journal of Mathematics.

[25]  Pierre Hansen,et al.  Erratum: A Cascade Algorithm for the Logical Closure of a Set of Binary Relations , 1976, Information Processing Letters.

[26]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[27]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[28]  A. Federgruen,et al.  Simulated annealing methods with general acceptance probabilities , 1987, Journal of Applied Probability.

[29]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[30]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[31]  Brigitte Jaumard,et al.  On the Complexity of the Maximum Satisfiability Problem for Horn Formulas , 1987, Inf. Process. Lett..

[32]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[33]  P. Hansen Methods of Nonlinear 0-1 Programming , 1979 .

[34]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[35]  Lawrence J. Henschen,et al.  Unit Refutations and Horn Sets , 1974, JACM.

[36]  MinkerJack,et al.  Logic and Databases: A Deductive Approach , 1984 .

[37]  Alain Hertz,et al.  The tabu search metaheuristic: How we used it , 1990, Annals of Mathematics and Artificial Intelligence.

[38]  Frederick Hayes-Roth,et al.  Building expert systems , 1983, Advanced book program.

[39]  Karl J. Lieberherr Algorithmic Extremal Problems in Combinatorial Optimization , 1982, J. Algorithms.

[40]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[41]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[42]  Jack Minker,et al.  Logic and Databases: A Deductive Approach , 1984, CSUR.

[43]  Karl J. Lieberherr,et al.  Complexity of partial satisfaction , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[44]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..