A multistage suboptimal dual controller using optimal predictors

This work concerns the control of stochastic systems with unknown and randomly time-varying parameters. Cost functions which consider the sum of output variances up to M steps ahead in time are adopted in the optimization of the control performance. Optimal predictors are used to replace the future outputs which are needed in the solution of the optimization problem. The consequences of this simplification are investigated. A formula is obtained for the computation of the control signal in the case of M-steps-ahead optimization. The relationships between the controller presented here and other classical suboptimal dual controllers are analyzed. Simulation results illustrate the actual performance of the new controller.

[1]  K. Åström,et al.  Problems of Identification and Control , 1971 .

[2]  Björn Wittenmark,et al.  An Active Suboptimal Dual Controller for Systems with Stochastic Parameters , 1975 .

[3]  T. Yoneyama,et al.  Suboptimal dual adaptive control for blood pressure management , 1997, IEEE Transactions on Biomedical Engineering.

[4]  Y. Bar-Shalom,et al.  A multiple model adaptive dual control algorithm for stochastic systems with unknown parameters , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[5]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[6]  J. Alster,et al.  A technique for dual adaptive control , 1974, Autom..

[7]  R. Padilla,et al.  An innovations approach to dual control , 1982 .

[8]  Tamer Basar,et al.  Dual Control Theory , 2001 .

[9]  Karl Johan Åström,et al.  Adaptive feedback control , 1987, Proc. IEEE.

[10]  Y. Bar-Shalom Stochastic dynamic programming: Caution and probing , 1981 .

[11]  Johan Wieslander,et al.  An approach to adaptive control using real time identification , 1971 .

[12]  J. Sternby A simple dual control problem with an analytical solution , 1976 .

[13]  Yaakov Bar-Shalom,et al.  An actively adaptive control for linear systems with random parameters via the dual control approach , 1972, CDC 1972.

[14]  Y. Bar-Shalom,et al.  Wide-sense adaptive dual control for nonlinear stochastic systems , 1973 .

[15]  Björn Wittenmark,et al.  Stochastic adaptive control methods: a survey , 1975 .

[16]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[17]  Takashi Yoneyama,et al.  A two-stage dual suboptimal controller for stochastic systems using approximate moments , 1994, Autom..

[18]  E. Blum Numerical analysis and computation theory and practice , 1972 .

[19]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[20]  O. Jacobs,et al.  Caution and probing in stochastic control , 1972 .

[21]  Yaakov Bar-Shalom,et al.  Generalized certainty equivalence and dual effect in stochastic control , 1975 .

[22]  Björn Wittenmark,et al.  An Adaptive Control Algorithm with Dual Features , 1985 .

[23]  H. van de Water,et al.  The certainty equivalence property in stochastic control theory , 1981 .

[24]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Stochastic Control , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  T. Yoneyama,et al.  Two-stage suboptimal dual controller for systems with stochastic parameters using optimal predictors , 1994 .

[26]  Hiroshi Takeda,et al.  Extensions of innovations dual control , 1988 .

[27]  O. Jacobs,et al.  Separability, neutrality and certainty equivalence† , 1971 .