Computer Creativity in the Automatic Design of Robots

This article demonstrates the possibility that robotic systems can automatically design robots with complex morphologies and tightly adapted control systems at a low cost. These automatic designs are inspired by nature and achieved through an artificial coevolutionary process to adapt the bodies and brains of artificial life-forms simultaneously through interaction with a simulated reality. Through the use of rapid manufacturing, these evolved designs can be transferred from virtual to true reality. The artificial evolution process embedded in realistic physical simulation can create simple designs often recognizable from the history of biology or engineering. This paper provides a brief review of three generations of these robots, from automatically designed LEGO structures, through the GOLEM project of electromechanical systems based on truss structures, to new modular designs that make use of a generative, DNA-like representation.

[1]  Jordan B. Pollack,et al.  Co-Evolving Intertwined Spirals , 1996, Evolutionary Programming.

[2]  Pattie Maes,et al.  Dynamics of Co-evolutionary Learning , 1996 .

[3]  John Hallam,et al.  Evolving robot morphology , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[4]  Jordan B. Pollack,et al.  Evolution of generative design systems for modular physical robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  Jordan B. Pollack,et al.  Co-Evolution in the Successful Learning of Backgammon Strategy , 1998, Machine Learning.

[6]  R. Dawkins The Blind Watchmaker , 1986 .

[7]  Svetha Venkatesh,et al.  From Living Eyes to Seeing Machines , 1997 .

[8]  Monty Newborn,et al.  Kasparov versus Deep Blue - computer chess comes of age , 1996 .

[9]  Inman Harvey,et al.  Artificial evolution of visual control systems for robots , 1997 .

[10]  Gregory S. Hornby,et al.  Body-brain co-evolution using L-systems as a generative encoding , 2001 .

[11]  Masahiro Fujita,et al.  Evolution of Controllers from a High-Level Simulator to a High DOF Robot , 2000, ICES.

[12]  Jordan B. Pollack,et al.  Evolving L-systems to generate virtual creatures , 2001, Comput. Graph..

[13]  Randall D. Beer,et al.  Application of evolved locomotion controllers to a hexapod robot , 1996, Robotics Auton. Syst..

[14]  Toshio Fukuda,et al.  Genetic Evolution and Self-Organization of Cellular Robotic System , 1995 .

[15]  Marc Schoenauer,et al.  Genetic Operators for Two-Dimensional Shape Optimization , 1995, Artificial Evolution.

[16]  Phil Husbands,et al.  Two Applications of Genetic Algorithms to Component Design , 1996, Evolutionary Computing, AISB Workshop.

[17]  J. Pollack,et al.  Challenges in coevolutionary learning: arms-race dynamics, open-endedness, and medicocre stable states , 1998 .

[18]  Nick Jakobi,et al.  Minimal simulations for evolutionary robotics , 1998 .

[19]  Stewart W. Wilson,et al.  From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior , 1997 .

[20]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[21]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[23]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[24]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Pablo Funes Computer Evolution of Buildable Objects , 1997 .

[26]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[27]  Jack C. Morrison,et al.  On-Board Software for the Mars Pathfinder Microrover , 1995 .

[28]  Julian F. Miller,et al.  Evolvable Systems: From Biology to Hardware - 9th International Conference, ICES 2010, York, UK, September 6-8, 2010. Proceedings , 2010, ICES.

[29]  Yu. A. Gur'yan,et al.  Parts I and II , 1982 .

[30]  J. Pollack,et al.  Coevolving High-Level Representations , 1993 .

[31]  Karl Sims,et al.  Artificial evolution for computer graphics , 1991, SIGGRAPH.

[32]  John Hallam,et al.  A hybrid GP/GA approach for co-evolving controllers and robot bodies to achieve fitness-specified tasks , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[33]  Christopher G. Langton,et al.  Artificial Life III , 2000 .

[34]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[35]  Gregory S. Hornby,et al.  The advantages of generative grammatical encodings for physical design , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[36]  Maciej Komosinski,et al.  Framsticks: Towards a Simulation of a Nature-Like World, Creatures and Evolution , 1999, ECAL.

[37]  Jordan B. Pollack,et al.  Creating High-Level Components with a Generative Representation for Body-Brain Evolution , 2002, Artificial Life.

[38]  Christoph Adami,et al.  Artificial life VI : proceedings of the sixth International Conference on Artificial Life , 1998 .

[39]  Inman Harvey,et al.  Fourth European Conference on Artificial Life , 1997 .

[40]  Peter J. Bentley,et al.  Evolutionary Design By Computers , 1999 .

[41]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[42]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[43]  D Cliff,et al.  Knowledge-based vision and simple visual machines. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[45]  Peter John Bentley,et al.  Generic evolutionary design of solid objects using a genetic algorithm , 2007 .

[46]  Jordan B. Pollack,et al.  Evolutionary Body Building: Adaptive Physical Designs for Robots , 1998, Artificial Life.

[47]  James K. Hahn,et al.  Genetic programming for articulated figure motion , 1995, Comput. Animat. Virtual Worlds.

[48]  Jordan B. Pollack,et al.  Embodied evolution: embodying an evolutionary algorithm in a population of robots , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[49]  W. Oechel,et al.  Automatic design and manufacture of robotic lifeforms , 2022 .