Multiway Non-rigid Point Cloud Registration via Learned Functional Map Synchronization.

We present SyNoRiM, a novel way to jointly register multiple non-rigid shapes by synchronizing the maps that relate learned functions defined on the point clouds. Even though the ability to process non-rigid shapes is critical in various applications ranging from computer animation to 3D digitization, the literature still lacks a robust and flexible framework to match and align a collection of real, noisy scans observed under occlusions. Given a set of such point clouds, our method first computes the pairwise correspondences parameterized via functional maps. We simultaneously learn potentially non-orthogonal basis functions to effectively regularize the deformations, while handling the occlusions in an elegant way. To maximally benefit from the multi-way information provided by the inferred pairwise deformation fields, we synchronize the pairwise functional maps into a cycle-consistent whole thanks to our novel and principled optimization formulation. We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy, while being flexible and efficient as we handle both non-rigid and multi-body cases in a unified framework and avoid the costly optimization over point-wise permutations by the use of basis function maps.

[1]  M. Ovsjanikov,et al.  DiffusionNet: Discretization Agnostic Learning on Surfaces , 2020, ACM Trans. Graph..

[2]  Stefan A. Baur,et al.  SLIM: Self-Supervised LiDAR Scene Flow and Motion Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[3]  Seungyong Lee,et al.  Deep Virtual Markers for Articulated 3D Shapes , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Guosheng Lin,et al.  HCRF-Flow: Scene Flow from Point Clouds with Continuous High-order CRFs and Position-aware Flow Embedding , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Takafumi Taketomi,et al.  4DComplete: Non-Rigid Motion Estimation Beyond the Observable Surface , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Andreas Geiger,et al.  Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  D. Raviv,et al.  Occlusion Guided Self-supervised Scene Flow Estimation on 3D Point Clouds , 2021, 2021 International Conference on 3D Vision (3DV).

[8]  Haoqiang Fan,et al.  Motion Basis Learning for Unsupervised Deep Homography Estimation with Subspace Projection , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Leonidas J. Guibas,et al.  Weakly Supervised Learning of Rigid 3D Scene Flow , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Christian Theobalt,et al.  Quantum Permutation Synchronization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  He Wang,et al.  MultiBodySync: Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Florian Bernard,et al.  Isometric Multi-Shape Matching , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Justus Thies,et al.  Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  K. Schindler,et al.  PREDATOR: Registration of 3D Point Clouds with Low Overlap , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Bo Yang,et al.  SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Hujun Bao,et al.  Recurrent Multi-view Alignment Network for Unsupervised Surface Registration , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Daniel Cremers,et al.  Deep Shells: Unsupervised Shape Correspondence with Optimal Transport , 2020, NeurIPS.

[18]  Maks Ovsjanikov,et al.  Correspondence Learning via Linearly-invariant Embedding , 2020, NeurIPS.

[19]  M. Ovsjanikov,et al.  Weakly Supervised Deep Functional Map for Shape Matching , 2020, NeurIPS 2020.

[20]  Maks Ovsjanikov,et al.  Consistent ZoomOut: Efficient Spectral Map Synchronization , 2020, Comput. Graph. Forum.

[21]  Keenan Crane,et al.  A Laplacian for Nonmanifold Triangle Meshes , 2020, Comput. Graph. Forum.

[22]  Alexandre Boulch,et al.  FLOT: Scene Flow on Point Clouds Guided by Optimal Transport , 2020, ECCV.

[23]  Xiangru Huang,et al.  Uncertainty quantification for multi-scan registration , 2020, ACM Trans. Graph..

[24]  John W. Fisher,et al.  Nonparametric Object and Parts Modeling With Lie Group Dynamics , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Vladlen Koltun,et al.  Deep Global Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Lu Yuan,et al.  LSM: Learning Subspace Minimization for Low-Level Vision , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Bailin Deng,et al.  Quasi-Newton Solver for Robust Non-Rigid Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Leonidas J. Guibas,et al.  Synchronizing Probability Measures on Rotations via Optimal Transport , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Abhishek Sharma,et al.  Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Tai-Jiang Mu,et al.  ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Leonidas J. Guibas,et al.  SAPIEN: A SimulAted Part-Based Interactive ENvironment , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  J. D. Wegner,et al.  Learning Multiview 3D Point Cloud Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Emanuele Menegatti,et al.  Quaternion Equivariant Capsule Networks for 3D Point Clouds , 2019, ECCV.

[34]  M. Zollhöfer,et al.  DeepDeform: Learning Non-Rigid RGB-D Reconstruction With Semi-Supervised Data , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Michael J. Black,et al.  Learning to Dress 3D People in Generative Clothing , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Jianmin Zheng,et al.  Disentangled Human Body Embedding Based on Deep Hierarchical Neural Network , 2019, IEEE Transactions on Visualization and Computer Graphics.

[37]  Zhuwen Li,et al.  PointPWC-Net: Cost Volume on Point Clouds for (Self-)Supervised Scene Flow Estimation , 2020, ECCV.

[38]  Shi-Min Hu,et al.  ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Christoph Lassner,et al.  Efficient Learning on Point Clouds With Basis Point Sets , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Mathieu Aubry,et al.  Learning elementary structures for 3D shape generation and matching , 2019, NeurIPS.

[41]  Leonidas J. Guibas,et al.  Limit Shapes – A Tool for Understanding Shape Differences and Variability in 3D Model Collections , 2019, Comput. Graph. Forum.

[42]  Ron Kimmel,et al.  Unsupervised Learning of Dense Shape Correspondence , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Yaser Sheikh,et al.  LBS Autoencoder: Self-Supervised Fitting of Articulated Meshes to Point Clouds , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Jing Ren,et al.  ZoomOut: Spectral Upsampling for Efficient Shape Correspondence , 2019, ACM Trans. Graph..

[46]  Umut Simsekli,et al.  Probabilistic Permutation Synchronization Using the Riemannian Structure of the Birkhoff Polytope , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Slobodan Ilic,et al.  3D Local Features for Direct Pairwise Registration , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Maks Ovsjanikov,et al.  Unsupervised Deep Learning for Structured Shape Matching , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[49]  Leonidas J. Guibas,et al.  FlowNet3D: Learning Scene Flow in 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Frank Hutter,et al.  Decoupled Weight Decay Regularization , 2017, ICLR.

[51]  C. Qi,et al.  FlowNet3D: Learning Scene Flow in 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Mathieu Aubry,et al.  3D-CODED: 3D Correspondences by Deep Deformation , 2018, ECCV.

[53]  Slobodan Ilic,et al.  SobolevFusion: 3D Reconstruction of Scenes Undergoing Free Non-rigid Motion , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[54]  Slobodan Ilic,et al.  Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC , 2018, NeurIPS.

[55]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[56]  Maks Ovsjanikov,et al.  On the Stability of Functional Maps and Shape Difference Operators , 2018, Comput. Graph. Forum.

[57]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[58]  Michael J. Black,et al.  ClothCap: seamless 4D clothing capture and retargeting , 2017, ACM Trans. Graph..

[59]  José Carlos Príncipe,et al.  Group-Wise Point-Set Registration Based on Rényi's Second Order Entropy , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Daniel Cremers,et al.  KillingFusion: Non-rigid 3D Reconstruction without Correspondences , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Alexander M. Bronstein,et al.  Fully Spectral Partial Shape Matching , 2017, Comput. Graph. Forum.

[62]  Maks Ovsjanikov,et al.  Informative Descriptor Preservation via Commutativity for Shape Matching , 2017, Comput. Graph. Forum.

[63]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[64]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[65]  Niklas Koep,et al.  Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation , 2016, J. Mach. Learn. Res..

[66]  Thomas Brox,et al.  A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Alvaro Collet,et al.  High-quality streamable free-viewpoint video , 2015, ACM Trans. Graph..

[68]  Samy Bengio,et al.  Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks , 2015, NIPS.

[69]  Michael J. Black,et al.  The stitched puppet: A graphical model of 3D human shape and pose , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Ron Kimmel,et al.  On the Optimality of Shape and Data Representation in the Spectral Domain , 2014, SIAM J. Imaging Sci..

[72]  Alec Jacobson,et al.  Skinning: real-time shape deformation , 2014, SIGGRAPH ASIA Courses.

[73]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[74]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[75]  Jan-Michael Frahm,et al.  Scanning and tracking dynamic objects with commodity depth cameras , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[76]  Leonidas J. Guibas,et al.  Image Co-segmentation via Consistent Functional Maps , 2013, 2013 IEEE International Conference on Computer Vision.

[77]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[78]  Hongdong Li,et al.  Rotation Averaging , 2013, International Journal of Computer Vision.

[79]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[80]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[81]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[83]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[84]  Sami Romdhani,et al.  Optimal Step Nonrigid ICP Algorithms for Surface Registration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[85]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[86]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[87]  Alan L. Yuille,et al.  The Motion Coherence Theory , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[88]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[89]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[90]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .