Evolving Social Behavior in Adverse Environments

Cooperative behaviors are pervasive in the natural world. How organisms evolve stable cooperative strategies, specifically how selection can favor such costly behaviors, is a difficult problem for which several theories exist. In this work, we use digital evolution to explore the evolution of the production of a public resource that enables populations of organisms to survive in an adverse environment. Kin selection and limited dispersal are shown to promote cooperative acts, and evolved organisms stave off invasion by cheaters and survive in increasingly-adverse environments. Further, we observe how populations react to the disappearance and later re-emergence of adversity in the environment.

[1]  Adam Tofilski,et al.  Preemptive Defensive Self‐Sacrifice by Ant Workers , 2008, The American Naturalist.

[2]  A. van Oudenaarden,et al.  Snowdrift game dynamics and facultative cheating in yeast , 2009, Nature.

[3]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[4]  Charles Ofria,et al.  Avida , 2004, Artificial Life.

[5]  C. Hauert,et al.  Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game , 2005 .

[6]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[7]  David Botstein,et al.  Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase , 1982, Cell.

[8]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[9]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[10]  Robert T. Pennock,et al.  The evolutionary origin of complex features , 2003, Nature.

[11]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[12]  Marco Tomassini,et al.  Hawks and Doves in an Artificial Dynamically Structured Society , 2008, ALIFE.

[13]  D. E. Stuart,et al.  Food Sharing Among Ache Foragers: Tests of Explanatory Hypotheses [and Comments and Reply] , 1985, Current Anthropology.

[14]  Philip K. McKinley,et al.  Evolving cooperative pheromone usage in digital organisms , 2009, 2009 IEEE Symposium on Artificial Life.

[15]  David B. Knoester,et al.  Harnessing Digital Evolution , 2008, Computer.

[16]  Miguel Cámara,et al.  QUORUM SENSING AND THE POPULATION-DEPENDENT CONTROL OF VIRULENCE , 2001 .

[17]  J. C. Burnham,et al.  Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments , 1984, Archives of Microbiology.

[18]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[19]  M. Elgar,et al.  The evolution of pheromone diversity. , 2008, Trends in ecology & evolution.

[20]  Philip K. McKinley,et al.  Evolution of Adaptive Population Control in Multi-agent Systems , 2008, 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems.

[21]  Ariel Fernández,et al.  Prisoner’s Dilemma cellular automata revisited: evolution of cooperation under environmental pressure , 2005, physics/0512187.

[22]  A. Griffin,et al.  Cooperation and competition in pathogenic bacteria , 2004, Nature.

[23]  J. Pollack,et al.  Kin-Selection: The Rise and Fall of Kin-Cheaters , 2004 .

[24]  P. Rainey,et al.  Evolution of cooperation and conflict in experimental bacterial populations , 2003, Nature.

[25]  W. Hamilton The genetical evolution of social behaviour. II. , 1964, Journal of theoretical biology.

[26]  C. Hauert,et al.  The Evolutionary Origin of Cooperators and Defectors , 2004, Science.

[27]  David B. Knoester,et al.  Cooperative network construction using digital germlines , 2008, GECCO '08.