Eingebettete Optimierung in der Regelungstechnik – Grundlagen und Herausforderungen

Zusammenfassung Die effiziente Lösung von Optimierungsproblemen in Echtzeit bildet die Grundlage vieler moderner Regelungs- und Schätzverfahren. So basieren die prädiktive Regelung sowie die Zustandsschätzung auf bewegtem Horizont auf der wiederholten Lösung beschränkter Optimierungsprobleme. Methodische sowie technologische Fortschritte ermöglichen den Einsatz optimierungsbasierter Verfahren in Echtzeit selbst für anspruchsvolle Regelungs- und Schätzprobleme mit Zeitkonstanten im Bereich von Mikro- oder sogar Nanosekunden. Nach einem Überblick über effiziente Lösungsansätze für die echtzeitfähige Umsetzung optimierungsbasierter Schätz- und Regelungsverfahren fokussiert sich diese Arbeit auf wesentliche technologische, regelungs- und systemtheoretische Aspekte für deren erfolgreichen Einsatz.

[1]  Moritz Diehl,et al.  In-Vehicle Realization of Nonlinear MPC for Gasoline Two-Stage Turbocharging Airpath Control , 2018, IEEE Transactions on Control Systems Technology.

[2]  Xiaojing Zhang,et al.  Data-Driven Predictive Control for Autonomous Systems , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[3]  Hannu T. Toivonen,et al.  Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process , 2005, Comput. Chem. Eng..

[4]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[5]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[6]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[7]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[8]  Davide Bresolin,et al.  A Platform-Based Design Methodology With Contracts and Related Tools for the Design of Cyber-Physical Systems , 2015, Proceedings of the IEEE.

[9]  Manfred Morari,et al.  Model Predictive Direct Torque Control—Part I: Concept, Algorithm, and Analysis , 2009, IEEE Transactions on Industrial Electronics.

[10]  Riccardo Scattolini,et al.  Neural Network Implementation of Nonlinear Receding-Horizon Control , 1999, Neural Computing & Applications.

[11]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[12]  Denis Navarro,et al.  Optimized FPGA Implementation of Model Predictive Control for Embedded Systems Using High-Level Synthesis Tool , 2018, IEEE Transactions on Industrial Informatics.

[13]  Michael Buchholz,et al.  Model Predictive Control Allocation in Electric Vehicle Drive Trains , 2015 .

[14]  Rolf Findeisen,et al.  Nonlinear model predictive control : a sampled data feedback perspective , 2005 .

[15]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[16]  Martin Mönnigmann,et al.  New Approaches for the Computation and Fast Evaluation of Explicit Model Predictive Control Laws , 2012 .

[17]  Martin Mönnigmann,et al.  A stabilizing control scheme for linear systems on controlled invariant sets , 2015, Syst. Control. Lett..

[18]  Mato Baotic,et al.  On the computation of linear model predictive control laws , 2010, Autom..

[19]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[20]  Frank Allgöwer,et al.  An Introduction to Nonlinear Model Predictive Control , 2002 .

[21]  Manfred Morari,et al.  Embedded Online Optimization for Model Predictive Control at Megahertz Rates , 2013, IEEE Transactions on Automatic Control.

[22]  Frank Allgöwer,et al.  Learning an Approximate Model Predictive Controller With Guarantees , 2018, IEEE Control Systems Letters.

[23]  Zhiyuan Liu,et al.  Coordinated Longitudinal and Lateral Motion Control for Four Wheel Independent Motor-Drive Electric Vehicle , 2018, IEEE Transactions on Vehicular Technology.

[24]  John A. Stankovic,et al.  Research Directions for the Internet of Things , 2014, IEEE Internet of Things Journal.

[25]  Margaret H. Wright,et al.  Ill-Conditioning and Computational Error in Interior Methods for Nonlinear Programming , 1998, SIAM J. Optim..

[26]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[27]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[28]  Alberto Bemporad,et al.  Efficient On-Line Computation of Constrained Optimal Control , 2008, SIAM J. Control. Optim..

[29]  Arun Gupta,et al.  A novel approach to multiparametric quadratic programming , 2011, Autom..

[30]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[31]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[32]  Rolf Findeisen,et al.  Multi-Mode Learning Supported Model Predictive Control with Guarantees , 2018 .

[33]  Eduardo F. Camacho,et al.  Robust tube-based MPC for tracking of constrained linear systems with additive disturbances , 2010 .

[34]  Lui Sha,et al.  Dynamic control system upgrade using the Simplex architecture , 1998 .

[35]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[36]  Alberto Bemporad,et al.  Hybrid model predictive control based on wireless sensor feedback : An experimental study , 2010 .

[37]  John Bagterp Jørgensen,et al.  High-performance small-scale solvers for linear Model Predictive Control , 2014, 2014 European Control Conference (ECC).

[38]  Roland Siegwart,et al.  Nonlinear Model Predictive Guidance for Fixed-wing UAVs Using Identified Control Augmented Dynamics , 2018, 2018 International Conference on Unmanned Aircraft Systems (ICUAS).

[39]  Stephen J. Wright,et al.  Partial enumeration MPC: Robust stability results and application to an unstable CSTR , 2011 .

[40]  J. M. Maestre,et al.  Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities , 2014, IEEE Control Systems.

[41]  W. Hager Multiplier methods for nonlinear optimal control , 1990 .

[42]  T. Johansen,et al.  Further results on multiparametric quadratic programming , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[43]  Si-Zhao Joe Qin,et al.  Model-Predictive Control in Practice , 2015, Encyclopedia of Systems and Control.

[44]  Tor Arne Johansen,et al.  An improved algorithm for combinatorial multi-parametric quadratic programming , 2013, Autom..

[45]  Daniel E. Quevedo,et al.  Predictive control, embedded cyberphysical systems and systems of systems - A perspective , 2016, Annu. Rev. Control..

[46]  Martin Mönnigmann,et al.  Regional MPC with active set updates , 2017 .

[47]  Arthur J. Krener,et al.  Improved Design of Nonlinear Model Predictive Controllers , 2015 .

[48]  Jürgen Pannek,et al.  Robustness of Prediction Based Delay Compensation for Nonlinear Systems , 2011, ArXiv.

[49]  C.M. Gosselin,et al.  Computationally Efficient Predictive Robot Control , 2007, IEEE/ASME Transactions on Mechatronics.

[50]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[51]  Manfred Morari,et al.  Embedded Predictive Control on an FPGA using the Fast Gradient Method , 2013, 2013 European Control Conference (ECC).

[52]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[53]  Rolf Findeisen,et al.  Cooperative Distributed MPC Using the Alternating Direction Multiplier Method , 2012 .

[54]  Bo Lincoln,et al.  Relaxing dynamic programming , 2006, IEEE Transactions on Automatic Control.

[55]  F. L. Lewis,et al.  Neural-network predictive control for nonlinear dynamic systems with time-delay , 2003, IEEE Trans. Neural Networks.

[56]  Martin Mönnigmann,et al.  Approximate explicit NMPC with guaranteed stability ensured by a simple auxiliary controller , 2012, 2012 IEEE International Symposium on Intelligent Control.

[57]  Christian Feller,et al.  A stabilizing iteration scheme for model predictive control based on relaxed barrier functions , 2016, Autom..

[58]  M. Kvasnica,et al.  Parallel Explicit MPC for Hardware with Limited Memory , 2017 .

[59]  Naji A. Alibeji,et al.  Nonlinear model predictive control of functional electrical stimulation , 2017 .

[60]  Rolf Findeisen,et al.  Prädiktive Regelung nichtlinearer Systeme unter asynchronen Mess- und StellsignalenNonlinear Predictive Control based on Asynchronous Measurement and Control Signals , 2009, Autom..

[61]  Hans Joachim Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[62]  Alberto Bemporad,et al.  Model Predictive Idle Speed Control: Design, Analysis, and Experimental Evaluation , 2012, IEEE Transactions on Control Systems Technology.

[63]  Stefano Di Cairano,et al.  On region-free explicit model predictive control , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[64]  Manfred Morari,et al.  A Multiresolution Approximation Method for Fast Explicit Model Predictive Control , 2011, IEEE Transactions on Automatic Control.

[65]  Rolf Findeisen,et al.  Model Predictive Control for Gust Load Alleviation , 2012 .

[66]  Manfred Morari,et al.  Efficient interior point methods for multistage problems arising in receding horizon control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[67]  Christian Feller,et al.  A first step toward moving horizon state estimation based on relaxed logarithmic barrier functions , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[68]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[69]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[70]  Huijun Gao,et al.  Network-Induced Constraints in Networked Control Systems—A Survey , 2013, IEEE Transactions on Industrial Informatics.

[71]  Dinh Quoc Tran,et al.  Adjoint-Based Predictor-Corrector Sequential Convex Programming for Parametric Nonlinear Optimization , 2012, SIAM J. Optim..

[72]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[73]  Stephen J. Wright,et al.  Conditions under which suboptimal nonlinear MPC is inherently robust , 2011, Syst. Control. Lett..

[74]  Martin Mönnigmann,et al.  Nonlinear MPC defines implicit regional optimal control laws , 2015 .

[75]  Miroslav Fikar,et al.  A memory-efficient representation of explicit MPC solutions , 2011, IEEE Conference on Decision and Control and European Control Conference.

[76]  Tor Arne Johansen,et al.  Dynamic Safety Constraints by Scenario-Based Economic Model Predictive Control of Marine Electric Power Plants , 2017, IEEE Transactions on Transportation Electrification.

[77]  Rolf Findeisen,et al.  Stabilizing nonlinear predictive control over non deterministic communication networks , 2008 .

[78]  Martin Mönnigmann,et al.  On the maximal controller gain in linear MPC , 2017 .

[79]  Stephen J. Wright Effects of Finite-Precision Arithmetic on Interior-Point Methods for Nonlinear Programming , 2001, SIAM J. Optim..

[80]  Martin Mönnigmann,et al.  Vertex based calculation of explicit MPC laws , 2012, 2012 American Control Conference (ACC).

[81]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[82]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[83]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[84]  G. Goodwin,et al.  Global analytical model predictive control with input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[85]  Sebastian Thrun,et al.  Towards fully autonomous driving: Systems and algorithms , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[86]  Boris Rohaľ-Ilkiv,et al.  Real-time moving horizon estimation for a vibrating active cantilever , 2017 .

[87]  Martin Mönnigmann,et al.  Constraint removal in linear MPC: An improved criterion and complexity analysis , 2016, 2016 European Control Conference (ECC).

[88]  B. De Moor,et al.  Implementation and experimental validation of classic MPC on Programmable Logic Controllers , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[89]  T. Alamo,et al.  A dynamic programming approach for determining the explicit solution of linear MPC controllers , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[90]  Manfred Morari,et al.  Enumeration-based approach to solving parametric linear complementarity problems , 2015, Autom..

[91]  Jan M. Maciejowski,et al.  A comparison of interior point and active set methods for FPGA implementation of model predictive control , 2009, 2009 European Control Conference (ECC).

[92]  Eric C. Kerrigan,et al.  Software and hardware code generation for predictive control using splitting methods , 2017 .

[93]  Knut Graichen,et al.  Nonlinear model predictive torque control of PMSMs for high performance applications , 2018, Control Engineering Practice.

[94]  Lars Grüne,et al.  Analysis of unconstrained NMPC schemes with incomplete optimization , 2010 .

[95]  Michal Kvasnica,et al.  Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system , 2017 .

[96]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[97]  Manfred Morari,et al.  Constrained Time-Optimal Control for Nonlinear Systems: A Fast Explicit Approximation , 2012 .

[98]  P. Goulart,et al.  A New Hot-start Interior-point Method for Model Predictive Control* , 2011 .

[99]  Martin Mönnigmann,et al.  Low complexity suboptimal explicit NMPC , 2012 .

[100]  Sorin Olaru,et al.  Embedded linear model predictive control for 8-bit microcontrollers via convex lifting , 2017 .

[101]  Martin Mönnigmann,et al.  Fast Explicit Model Predictive Control with Multiway Trees , 2011 .

[102]  Efstratios N. Pistikopoulos,et al.  On multi-parametric programming and its applications in process systems engineering , 2016 .

[103]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[104]  Gergely Takács,et al.  Application Aspects of Active-set Quadratic Programming in Real-time Embedded Model Predictive Vibration Control , 2017 .

[105]  Sebastian Engell,et al.  Model Predictive Control Using Neural Networks [25 Years Ago] , 1995, IEEE Control Systems.

[106]  Leopoldo G. Franquelo,et al.  Model Predictive Control: A Review of Its Applications in Power Electronics , 2014, IEEE Industrial Electronics Magazine.

[107]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[108]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[109]  Klaus Schittkowski,et al.  Sequential Convex Programming Methods , 1995 .

[110]  Douglas A. Allan,et al.  Moving Horizon Estimation , 2018, Handbook of Model Predictive Control.

[111]  Helfried Peyrl,et al.  First-order methods in embedded nonlinear model predictive control , 2015, 2015 European Control Conference (ECC).

[112]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[113]  Michael Athans,et al.  Optimal Control , 1966 .

[114]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[115]  Nicholas I. M. Gould,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[116]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[117]  Mingxin Kang,et al.  Continuation/GMRES Method based Nonlinear Model Predictive Control for IC Engines , 2014 .

[118]  M. Morari,et al.  A robust explicit nonlinear MPC controller with input-to-state stability guarantees , 2011 .

[119]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[120]  Tor Arne Johansen,et al.  Automatically generated embedded model predictive control: Moving an industrial PC‐based MPC to an embedded platform , 2015 .

[121]  Mani Bhushan,et al.  Linear Machine Solution to Point Location Problem , 2017, IEEE Transactions on Automatic Control.

[122]  Andreas Kugi,et al.  Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints , 2010, IEEE Transactions on Automatic Control.

[123]  Graham C. Goodwin,et al.  Characterisation Of Receding Horizon Control For Constrained Linear Systems , 2003 .

[124]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[125]  Tor Arne Johansen,et al.  Embedded Model Predictive Control on a PLC using a primal-dual first-order method for a subsea separation process , 2014, 22nd Mediterranean Conference on Control and Automation.

[126]  Knut Graichen,et al.  Optimal control of dual-clutch transmissions with multiple groups , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[127]  T. Johansen,et al.  Computation and approximation of piecewise affine control laws via binary search trees , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[128]  Kazimierz Malanowski,et al.  Stability of solutions to convex problems of optimization , 1987 .

[129]  Rolf Findeisen,et al.  Implementation aspects of model predictive control for embedded systems , 2012, 2012 American Control Conference (ACC).

[130]  S. Shankar Sastry,et al.  Provably safe and robust learning-based model predictive control , 2011, Autom..

[131]  Grégoire Allaire,et al.  Numerical analysis and optimization , 2007 .

[132]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[133]  Michael Buchholz,et al.  A real-time nonlinear MPC scheme with emission constraints for heavy-duty diesel engines , 2017, 2017 American Control Conference (ACC).

[134]  Ion Necoara Computational complexity certification for dual gradient method: Application to embedded MPC , 2015, Syst. Control. Lett..

[135]  Knut Graichen,et al.  Experimental results for distributed model predictive control applied to a water distribution system , 2014, 2014 IEEE International Symposium on Intelligent Control (ISIC).

[136]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[137]  Manfred Morari,et al.  Polytopic Approximation of Explicit Model Predictive Controllers , 2010, IEEE Transactions on Automatic Control.

[138]  Frank Allgöwer,et al.  Economic and Distributed Model Predictive Control: Recent Developments in Optimization-Based Control , 2017 .

[139]  Adrian Wills,et al.  Interior-Point Algorithms for Nonlinear Model Predictive Control , 2007 .

[140]  Toshiyuki Ohtsuka,et al.  A tutorial on C/GMRES and automatic code generation for nonlinear model predictive control , 2015, 2015 European Control Conference (ECC).

[141]  Liuping Wang,et al.  Safety-critical multi-core software architecture for Model Predictive Control , 2011, 2011 Australian Control Conference.

[142]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[143]  Jan Van Impe,et al.  Towards Online Model Predictive Control on a Programmable Logic Controller: Practical Considerations , 2012 .

[144]  Rolf Findeisen,et al.  Stability of Gaussian Process Learning Based Output Feedback Model Predictive Control , 2018 .

[145]  Antonio Vicino,et al.  Information-Based Complexity and Nonparametric Worst-Case System Identification , 1993, J. Complex..

[146]  T. Başar Contributions to the Theory of Optimal Control , 2001 .

[147]  Martin Mönnigmann,et al.  A novel event-triggered robust MPC scheme for linear systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[148]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[149]  Tor Arne Johansen,et al.  Toward Dependable Embedded Model Predictive Control , 2017, IEEE Systems Journal.

[150]  Alberto Bemporad,et al.  Supervisory Model Predictive Control of a Powertrain with a Continuously Variable Transmission , 2018 .

[151]  Andrew G. Alleyne,et al.  Autonomous Vehicle Control: A Nonconvex Approach for Obstacle Avoidance , 2017, IEEE Transactions on Control Systems Technology.

[152]  Manfred Morari,et al.  Real-Time Suboptimal Model Predictive Control Using a Combination of Explicit MPC and Online Optimization , 2011, IEEE Trans. Autom. Control..

[153]  T. Johansen On multi-parametric nonlinear programming and explicit nonlinear model predictive control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[154]  Rudy R. Negenborn,et al.  Distributed Model Predictive Control Made Easy , 2013 .

[155]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[156]  Ion Necoara,et al.  An adaptive constraint tightening approach to linear model predictive control based on approximation algorithms for optimization , 2015 .

[157]  John J. Hopfield,et al.  Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit , 1986 .

[158]  Alberto Bemporad,et al.  Model predictive control of turbocharged gasoline engines for mass production , 2018 .

[159]  Sorin Olaru,et al.  Convex Lifting: Theory and Control Applications , 2018, IEEE Transactions on Automatic Control.

[160]  Bartosz Kapernick,et al.  Nichtlineare modellprädiktive Regelung auf SPS , 2014 .

[161]  Martin Mönnigmann,et al.  Accelerating linear model predictive control by constraint removal , 2017, Eur. J. Control.

[162]  Manfred Morari,et al.  Contractive model predictive control for constrained nonlinear systems , 2000, IEEE Trans. Autom. Control..

[163]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[164]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[165]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[166]  Panagiotis Patrinos,et al.  A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings , 2010, Autom..

[167]  Martin Mönnigmann,et al.  Regionale prädiktive Regelung – Modellprädiktive Regelung mittels stückweise definiertem Riccati-Regler , 2017, Autom..

[168]  José Mario Martínez,et al.  Improving ultimate convergence of an augmented Lagrangian method , 2008, Optim. Methods Softw..

[169]  Eric C. Kerrigan,et al.  Explicit MPC: Hard constraint satisfaction under low precision arithmetic , 2016 .

[170]  Rolf Findeisen,et al.  Efficiency and performance of embedded model predictive control for active vibration attenuation , 2016, 2016 European Control Conference (ECC).

[171]  Stefano Di Cairano,et al.  The development of Model Predictive Control in automotive industry: A survey , 2012, 2012 IEEE International Conference on Control Applications.

[172]  Alberto Bemporad,et al.  Exact Complexity Certification of Active-Set Methods for Quadratic Programming , 2017, IEEE Transactions on Automatic Control.

[173]  Dirk Abel,et al.  Nonlinear MPC for a two-stage turbocharged gasoline engine airpath , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[174]  Miroslav Fikar,et al.  Stabilizing polynomial approximation of explicit MPC , 2011, Autom..

[175]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[176]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[177]  Manfred Morari,et al.  Real-time input-constrained MPC using fast gradient methods , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[178]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[179]  L. del Re,et al.  Direct C/GMRES Control of The Air Path of a Diesel Engine , 2014 .

[180]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[181]  Sergey Levine,et al.  Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[182]  Lui Sha,et al.  The System-Level Simplex Architecture for Improved Real-Time Embedded System Safety , 2009, 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium.

[183]  M. Morari,et al.  Fast explicit nonlinear model predictive control via multiresolution function approximation with guaranteed stability , 2010 .

[184]  Alberto Bemporad,et al.  Model Predictive Control Toolbox™ User’s Guide , 2004 .

[185]  Karl Henrik Johansson,et al.  Distributed MPC Via Dual Decomposition and Alternative Direction Method of Multipliers , 2012, ArXiv.

[186]  Martin Mönnigmann,et al.  Optimal and suboptimal event-triggering in linear model predictive control , 2015, 2015 European Control Conference (ECC).

[187]  Knut Graichen,et al.  Nonlinear model predictive control based on constraint transformation , 2016 .

[188]  M. Kvasnica,et al.  Low-complexity polynomial approximation of explicit MPC via linear programming , 2010, Proceedings of the 2010 American Control Conference.

[189]  Alexander Domahidi,et al.  Embedded optimization methods for industrial automatic control , 2017 .

[190]  Knut Graichen,et al.  The gradient based nonlinear model predictive control software GRAMPC , 2014, 2014 European Control Conference (ECC).

[191]  A. Richards,et al.  Decentralized model predictive control of cooperating UAVs , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[192]  Eric C. Kerrigan,et al.  Fast FPGA prototyping toolbox for embedded optimization , 2015, 2015 European Control Conference (ECC).

[193]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[194]  Miroslav Fikar,et al.  A Low-Complexity Explicit MPC Controller for AFR Control , 2015 .

[195]  Efstratios N. Pistikopoulos,et al.  A Novel mp-NLP Algorithm for Explicit/Multi-parametric NMPC * , 2010 .

[196]  Alberto L. Sangiovanni-Vincentelli,et al.  Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems , 2012, Eur. J. Control.

[197]  Martin Mönnigmann,et al.  Online constraint removal: Accelerating MPC with a Lyapunov function , 2015, Autom..

[198]  Rolf Findeisen,et al.  μAO-MPC: A free code generation tool for embedded real-time linear model predictive control , 2013, 2013 American Control Conference.

[199]  T. Johansen,et al.  On explicit suboptimal LQR with state and input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[200]  Thomas Parisini,et al.  Networked Predictive Control of Uncertain Constrained Nonlinear Systems: Recursive Feasibility and Input-to-State Stability Analysis , 2011, IEEE Transactions on Automatic Control.

[201]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .