Segmenting Proteins into Tripeptides to Enhance Conformational Sampling with Monte Carlo Methods

This paper presents an approach to enhance conformational sampling of proteins employing stochastic algorithms such as Monte Carlo (MC) methods. The approach is based on a mechanistic representation of proteins and on the application of methods originating from robotics. We outline the general ideas of our approach and detail how it can be applied to construct several MC move classes, all operating on a shared representation of the molecule and using a single mathematical solver. We showcase these sampling techniques on several types of proteins. Results show that combining several move classes, which can be easily implemented thanks to the proposed approach, significantly improves sampling efficiency.

[1]  A. Pohorille,et al.  The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data , 1997 .

[2]  Jerome Nilmeier,et al.  Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. , 2008, Journal of chemical theory and computation.

[3]  Juan Cortés,et al.  A Robotics Approach to Enhance Conformational Sampling of Proteins , 2012 .

[4]  Michael W. Deem,et al.  Efficient Monte Carlo methods for cyclic peptides , 1999 .

[5]  Yuko Okamoto,et al.  Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. , 2003, Journal of molecular graphics & modelling.

[6]  Ian W. Davis,et al.  The backrub motion: how protein backbone shrugs when a sidechain dances. , 2006, Structure.

[7]  Hong Y. Lee,et al.  A new vector theory for the analysis of spatial mechanisms , 1988 .

[8]  M. Renaud,et al.  A SIMPLIFIED INVERSE KINEMATIC MODEL CALCULATION METHOD FOR ALL 6R TYPE MANIPULATORS , 2000 .

[9]  Oliver F. Lange,et al.  Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution , 2008, Science.

[10]  Tanja Kortemme,et al.  Backbone flexibility in computational protein design. , 2009, Current opinion in biotechnology.

[11]  Julius Jellinek,et al.  Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .

[12]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[13]  Thierry Siméon,et al.  Geometric algorithms for the conformational analysis of long protein loops , 2004, J. Comput. Chem..

[14]  Jerome Nilmeier,et al.  Assessing protein loop flexibility by hierarchical Monte Carlo sampling. , 2011, Journal of chemical theory and computation.

[15]  Andreas Vitalis,et al.  Methods for Monte Carlo simulations of biomacromolecules. , 2009, Annual reports in computational chemistry.

[16]  W. L. Jorgensen,et al.  Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation. , 2004, Journal of the American Chemical Society.

[17]  Henry van den Bedem,et al.  Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR , 2014, Proceedings of the National Academy of Sciences.

[18]  L. Kay,et al.  NMR studies of protein structure and dynamics. , 2005, Journal of magnetic resonance.

[19]  Wouter Boomsma,et al.  Subtle Monte Carlo Updates in Dense Molecular Systems. , 2012, Journal of chemical theory and computation.

[20]  A. Bondi van der Waals Volumes and Radii , 1964 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  M. Deem,et al.  Analytical rebridging Monte Carlo: Application to cis/trans isomerization in proline-containing, cyclic peptides , 1999, physics/9904057.

[23]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[24]  Lilia Alberghina,et al.  Order propensity of an intrinsically disordered protein, the cyclin‐dependent‐kinase inhibitor Sic1 , 2009, Proteins.

[25]  Mihaly Mezei,et al.  Efficient Monte Carlo sampling for long molecular chains using local moves, tested on a solvated lipid bilayer , 2003 .

[26]  Jerome Nilmeier,et al.  Monte Carlo Sampling with Hierarchical Move Sets: POSH Monte Carlo. , 2009, Journal of chemical theory and computation.

[27]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[28]  Erion Plaku,et al.  A Survey of Computational Treatments of Biomolecules by Robotics-Inspired Methods Modeling Equilibrium Structure and Dynamic , 2016, J. Artif. Intell. Res..

[29]  David J Wales,et al.  Global optimization and folding pathways of selected alpha-helical proteins. , 2005, The Journal of chemical physics.

[30]  Aaron R. Dinner,et al.  Local deformations of polymers with nonplanar rigid main-chain internal coordinates , 2000, J. Comput. Chem..

[31]  Thierry Siméon,et al.  Motion planning algorithms for molecular simulations: A survey , 2012, Comput. Sci. Rev..

[32]  Berend Smit,et al.  Understanding Molecular Simulations: from Algorithms to Applications , 2002 .

[33]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[34]  Udayan Guha,et al.  SH3 domains: modules of protein–protein interactions , 2012, Biophysical Reviews.

[35]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[36]  Manuel Laso,et al.  A critical evaluation of novel algorithms for the off-lattice Monte Carlo simulation of condensed polymer phases , 1994 .

[37]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[38]  John F. Canny,et al.  Geometric Problems in Molecular Biology and Robotics , 1994, ISMB.

[39]  M. Betancourt,et al.  Efficient Monte Carlo trial moves for polypeptide simulations. , 2005, The Journal of chemical physics.

[40]  Bruce Randall Donald,et al.  Algorithms in Structural Molecular Biology , 2011 .

[41]  David J. Wales,et al.  Global optimization and folding pathways of selected α-helical proteins , 2005 .

[42]  William L. Jorgensen,et al.  Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias , 2003 .

[43]  Lydia E Kavraki,et al.  Computational models of protein kinematics and dynamics: beyond simulation. , 2012, Annual review of analytical chemistry.

[44]  Harold A. Scheraga,et al.  Conformational Analysis of Macromolecules. II. The Rotational Isomeric States of the Normal Hydrocarbons , 1966 .

[45]  E Marseglia,et al.  An Introduction to X-Ray Crystallography , 1979 .

[46]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[47]  Thierry Siméon,et al.  Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method. , 2010, Physical chemistry chemical physics : PCCP.

[48]  David Curcó,et al.  Relaxation of amorphous multichain polymer systems using inverse kinematics , 2010 .

[49]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[50]  Hong Y. Lee,et al.  Displacement analysis of the general spatial 7-link 7R mechanism , 1988 .

[51]  Pau Bernadó,et al.  A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.